怪文書 トレンド
0post
2025.11.27 11:00
:0% :0% (30代/男性)
人気のポスト ※表示されているRP数は特定時点のものです
【最重要】元県民局長が、2022年に匿名で送ってた数ある怪文書のひとつ😱
⚠️これは以前にお知らせしてた怪文書〈下記リプ〉
1️⃣丸山穂高さんが話した公用PCファイル【20220506遊びの相談4】にあったもの
2️⃣令和6年10月25日百条委員会で井ノ本氏本人が証言
3️⃣増山県議が百条委員会で概要を発言した内容(I室長は井ノ本さんのこと)
※新田さんがイニシャル表記変更、さらに非公開にしたので我慢してましたが〈全て持ってます😊〉正にこの年のこの怪文書あたりから、元県民局長は計画通り実行した「不正目的」の最重要な証拠ですから掲載は賛成です
詳細を見なくても解っていましたが、全てを読むと本当に恐ろしい【私怨】の塊。『正義の告発者』どごろか【悪魔】です。吐き気がします
⬇️一部抜粋
☑️井ノ本室長が副知事になられてもいいのではと仲間内では言い合っています。私達は室長の味方。
➨本当に恐ろしい😨匿名で味方のフリしている
☑️人事や財政などの課長、局長経験者は皆さん調子ばかりいいだけで信用は置けません。今は大人しくしている人達も片山、小橋、原田とおんなじ人種です。 もっと、広く人材を求めて下さい。 きっと、素晴らしい職員に出会えるはずです。
➨完全に3人〈片山、小橋、原田〉と仲違いさせるという「計画通り」実行してる😡
☑️室長がご協力いただけないのなら、他の方を経由してお耳に入れてもいいのです。
➨これは完全に脅迫ですよね😡
☑️片山副知事があちこちで「自分は選挙でに賭けて、勝ったんや」って言っているようですよ。「だから、副知事になったのも当然だ」とも。 井ノ本室長のご苦労を横取りしていますよ。既に陰では井ノ本室長の悪口を知事に囁いているかもしれませんよ。
➨片山さんを悪者にして完全に井ノ本さんを騙そうとしてる。悪質過ぎる。片山さんはこんな人を庇っていたの?😭
【結論】以上の事実から解ること
1️⃣県民局長は、自分や仲間?の人事の恨みから【片山、小橋、原田、井ノ本を仲違いさせる】ことを目的に動いた。改革反対派の命令で動いていたなら、片山さんの仰る通り「権力闘争」。そして「3月12日文書」で仕上げを実行に移した‼️「怪文書ばら撒いてみる」がさらなる証拠
2️⃣県民局長自身は、知事失脚が前提ではないかもしれないが、恨みから側近仲違い・左遷=不正な目的には違いない
3️⃣本当に正義のためなら【噂話】を調べて【証拠】を付けるはず。ひとつの証拠も付けてない告発文だった。
4️⃣少なくとも「県民」のことなど1ミリも思ってなかった。県民局長だったのに。
以上のことから「こんな恨み怪文書」が公益通報になるわけがないと、「冗談じゃない」と私は今でも感じています。斎藤知事擁護など関係ない。それ以前の問題。
※私が残念なのは、この『匿名誹謗中傷書』を受け取った時点で、通報なりして徹底的に犯人探しをしてほしかった😭(私なら徹底的にやる) November 11, 2025
2RP
18年ほど前、市長時代に「日曜赤旗」を庁内での販売を厳禁しました。共産党からは物凄い嫌がらせ(市民病院民間委譲に伴うリコール.23億円の住民訴訟、怪文書など)を受けましたが、多くの職員から「助かった!」と喜ばれました。 https://t.co/tFnXLr7Kxn November 11, 2025
2RP
#文学フリマで買った本
『SAPPORO CULT CLASSICS 最終報告書』
@sap_cult_classs
札幌の電柱に貼られている怪文書を辿った記録の総報告。もちろんこの手の話は大好物で、体当たりで取材されている様子に胸が熱くなりました。
中野の怪文書についても何とかして真相に辿り着きたいものです。 https://t.co/4GpFaSrP4T November 11, 2025
2RP
Gemini3, Nano Banana Pro登場で, 先月時点で私がTBSの以下番組で「OpenAIは危うい.Googleが勝つ」としてたのが注目(特に投資家層?)されてるようです
実際は公には以下記事で2024年OpenAI絶頂期からずっとGoogle有利とみてます
長い(私のX史上最長)ですが根拠, OpenAI vs Googleの展望を書いてみます
先月のTBS動画:https://t.co/kgWcyTOTWK
2024年6月の記事:https://t.co/4HEhA4IJQa
参考のため、私がクローズドな投資家レクなどで使う資料で理解の助けになりそうなものも貼っておきます。
※以下はどちらかというと非研究者向けなので、研究的には「当たり前では」と思われることや、ちょっと省略しすぎな点もあります。
まず、現在の生成AI開発に関して、性能向上の根本原理、研究者のドグマ的なものは以下の二つです。基本的には現在のAI開発はこの二つを押さえれば大体の理解ができると思います。両者とも出てきたのは約5年前ですが、細かい技術の発展はあれど、大部分はこの説に則って発展しています。
①スケーリング則
https://t.co/WKl3kTzcX5
②SuttonのThe Bitter Lesson
https://t.co/esHtiJAcH9
①のスケーリング則は2020年に出てきた説で、AIの性能は1)学習データの量、2)学習の計算量(=GPUの投入量)、3)AIのモデルサイズ(ニューラルネットワークのパラメータ数)でほぼ決まってしまうという説です。この3つを「同時に」上げ続けることが重要なのですが、1と3はある程度研究者の方で任意に決められる一方、2のGPUはほぼお金の問題になります。よって、スケーリング則以降のAI開発は基本的にお金を持っている機関が有利という考えが固まりました。現在のChatGPTなどを含む主要な生成AIは一つ作るのに、少なく見積もってもスカイツリーを一本立てるくらい(数百億)、実際には研究の試行錯誤も含めると普通に数千億から数兆かかるくらいのコストがかかりますが、これの大部分はGPUなどの計算リソース調達になります。
②のThe Bitter Lessonは、研究というよりはRichard Suttonという研究者個人の考えなのですが、Suttonは現在のAI界の長老的な人物で、生成AI開発の主要技術(そして私の専門)でもある強化学習の事実上の祖かつ世界的な教科書(これは私達の翻訳書があるのでぜひ!)の執筆者、さらにわれわれの分野のノーベル賞に相当するチューリング賞の受賞者でもあるので、重みが違います。
これは端的にいうと、「歴史的に、AIの発展は、人間の細かい工夫よりも、ムーアの法則によって加速的に発展する計算機のハードの恩恵をフルに受けられるものの方がよい。つまりシンプルで汎用的なアルゴリズムを用い、計算機パワーに任せてAIを学習させた方が成功する。」ということを言っています。
①と②をまとめると、とにかく現状のAIの性能改善には、GPUのような計算リソースを膨大に動員しなければならない。逆に言えばそれだけの割と単純なことで性能上昇はある程度約束されるフェーズでもある、ということになります。
これはやや議論を単純化しすぎている部分があり、実際には各研究機関とも細かいノウハウなどを積み重ねていたり、後述のようにスケーリングが行き詰まることもあるのですが、それでも昨今のAI発展の大半はこれで説明できます。最近一般のニュースでもよく耳にするようになった異常とも言えるインフラ投資とAIバブル、NVIDIAの天下、半導体関連の輸出制限などの政治的事象も、大元を辿ればこれらの説に辿り着くと思います。
以下、この二つの説を前提に話を進めます。
公にはともかく私が個人的に「OpenAIではなくGoogleが最終的には有利」と判断したのはかなり昔で、2023年の夏時点です。2023年6月に、研究者界隈ではかなり話題になった、OpenAIのGPT-4に関するリーク怪文書騒動がありました。まだGoogleが初代Geminiすら出してなかった時期です。(この時期から生成AIを追っている人であれば、GPT-4のアーキテクチャがMoEであることが初めて明らかになったアレ、と言えば伝わるかと思います)
ChatGPTの登場からGPT-4と来てあれほどの性能(当時の感覚で言うと、ほぼ錬金術かオーパーツの類)を見せられた直後の数ヶ月は、さすがに生成AI開発に関する「OpenAIの秘伝のタレ説」を考えており、OpenAIの優位は揺らがないと考えていました。論文では公開されていない、既存研究から相当逸脱した特殊技術(=秘伝のタレ)がOpenAIにはあって、それが漏れない限りは他の機関がどれだけお金をかけようが、まず追いつくのは不可能だと思っていたのです。しかし、あのリーク文書の結論は、OpenAIに特別の技術があったわけではなく、あくまで既存技術の組み合わせとスケーリングでGPT-4は実現されており、特に秘伝のタレ的なものは存在しないというものでした。その後、2023年12月のGemini初代が微妙だったので、ちょっと揺らぐこともあったのですが、基本的には2023年から私の考えは「最終的にGoogleが勝つだろう」です。
つまり、「スケーリングに必要なお金を持っており、実際にそのAIスケーリングレースに参加する経営上の意思決定と、それを実行する研究者が存在する」という最重要の前提について、OpenAIとGoogleが両方とも同じであれば、勝負が着くのはそれ以外の要素が原因であり、Googleの方が多くの勝ちにつながる強みを持っているだろう、というのが私の見立てです。
次に、AI開発競争の性質についてです。
普通のITサービスは先行者有利なのですが、どうもAI開発競争については「先行者不利」となっている部分があります。先行者が頑張ってAIを開発しても、その優位性を保っている部分でAIから利益を得ることはほとんどの場合はできず、むしろ自分たちが発展させたAI技術により、後発事業者が追いついてきてユーザーが流出してしまうということがずっと起きているように思われます。
先ほどのスケーリング則により、最先端のAIというのはとても大きなニューラルネットワークの塊で、学習時のみならず、運用コストも膨大です。普通のITサービスは、一旦サービスが完成してしまえば、ユーザーが増えることによるコスト増加は大したことがないのですが、最先端の生成AIは単なる個別ユーザーの「ありがとうございます」「どういたしまして」というチャットですら、膨大な電力コストがかかる金食い虫です。3ドル払って1ドル稼ぐと揶揄されているように、基本的にはユーザーが増えれば増えるほど赤字です。「先端生成AIを開発し、純粋に生成AIを使ったプロダクトから利益を挙げ続ける」というのは、現状まず不可能です。仮に最先端のAIを提供している間に獲得したユーザーが固定ユーザーになってくれれば先行者有利の構図となり、その開発・運営コストも報われるのですが、現状の生成AIサービスを選ぶ基準は純粋に性能であるため、他の機関が性能で上回った瞬間に大きなユーザー流出が起きます。現状の生成AIサービスはSNSのように先行者のネットワーク効果が働かないため、常に膨大なコストをかけて性能向上レースをしなければユーザー維持ができません。しかも後発勢は、先行者が敷いた研究のレールに乗っかって低コストで追いつくことができます。
生成AI開発競争では以上の、
・スケーリング則などの存在により、基本的には札束戦争
・生成AIサービスは現状お金にならない
・生成AI開発の先行者有利は原則存在しない
と言う大前提を理解しておくと、読み解きやすいかと思います。
(繰り返しですがこれは一般向けの説明で、実際に現場で開発している開発者は、このような文章では表現できないほどの努力をしています。)
OpenAIが生成AI開発において(先週まで)リードを保っていた源泉となる強みは、とにかく以下に集約されると思います。
・スケーリングの重要性に最初に気付き、自己回帰型LLMという単なる「言語の穴埋め問題がとても上手なニューラルネットワーク」(GPTのこと)に兆レベルの予算と、数年という(AI界隈の基準では)気が遠くなるような時間を全ベットするという狂気を先行してやり、ノウハウ、人材の貯金があった
・極めてストーリー作りや世論形成がうまく、「もうすぐ人のすべての知的活動ができるAGIが実現する。それを実現する技術を持っているのはOpenAIのみである」という雰囲気作りをして投資を呼び込んだ
前者については、スケーリングと生成AIという、リソース投下が正義であるという同じ技術土俵で戦うことになる以上、後発でも同レベルかそれ以上の予算をかけられる機関が他にいれば、基本的には時間経過とともにOpenAIと他の機関の差は縮みます。後者については、OpenAIがリードしている分には正当化されますが、一度別の組織に捲られると、特に投資家層に対するストーリーの維持が難しくなります。
一方のGoogleの強みは以下だと思います。
・投資マネーに頼る必要なく、生成AI開発と応用アプリケーションの赤字があったとしても、別事業のキャッシュで相殺して半永久的に自走できる
・生成AIのインフラ(TPU、クラウド事業)からAI開発、AIを応用するアプリケーション、大量のユーザーまですべてのアセットがすでに揃っており、各段階から取れるデータを生かして生成AIの性能向上ができる他、生成AIという成果物から搾り取れる利益を最大化できる
これらの強みは、生成AIのブーム以前から、AIとは関係なく存在する構造的なものであり、単に時間経過だけでは縮まらないものです。序盤はノウハウ不足でOpenAIに遅れをとることはあっても、これは単に経験の蓄積の大小なので、Googleの一流開発者であれば、あとは時間の問題かと思います。
(Googleの強みは他にももっとあるのですが、流石に長くなりすぎるので省略)
まとめると、
生成AIの性能は、基本的にスケーリング則を背景にAI学習のリソース投下の量に依存するが、これは両者であまり差がつかない。OpenAIは先行者ではあったが、AI開発競争の性質上、先行者利益はほとんどない。OpenAIの強みは時間経過とともに薄れるものである一方、Googleの強みは時間経過で解消されないものである。OpenAIは自走できず、かつストーリーを維持しない限り、投資マネーを呼び込めないが、一度捲られるとそれは難しい。一方、GoogleはAIとは別事業のキャッシュで自走でき、OpenAIに一時的に負けても、長期戦でも問題がない。ということになります。
では、OpenAIの勝利条件があるとすれば、それは以下のようなものになると思います。
・OpenAIが本当に先行してAGI開発に成功してしまう。このAGIにより、研究開発や肉体労働も含むすべての人間の活動を、人間を上回る生産性で代替できるようになる。このAGIであらゆる労働を行なって収益をあげ、かつそれ以降のAIの開発もAGIが担うことにより、AIがAIを開発するループに入り、他の研究機関が原理的に追いつけなくなる(OpenAIに関する基本的なストーリーはこれ)
・AGIとまではいかなくとも人間の研究力を上回るAIを開発して、研究開発の進捗が著しく他の機関を上回るようになる
・ネットワーク効果があり先行者有利の生成AIサービスを作り、そこから得られる収益から自走してAGI開発まで持っていく
・奇跡的な生成AIの省リソース化に成功し、現在の生成AIサービスからも収益が得られるようになる
・生成AI・スケーリング則、あるいは深層学習とは別パラダイムのAI技術レースに持ち込み技術を独占する(これは現在のAI研究の前提が崩れ去るので、OpenAI vs Googleどころの話ではない)
・Anthropicのように特定領域特化AIを作り、利用料金の高さを正当化できる価値を提供する
最近のOpenAIのSora SNSや、検索AI、ブラウザ開発などに、この辺の勝利条件を意識したものは表れているのですが、今のところ成功はしていないのではないかと思います。省リソース化に関しては、多分頑張ってはいてたまに性能ナーフがあるのはこれの一環かもしれないです。とはいえ、原則性能の高さレースをやっている時にこれをやるのはちょっと無理。最後のやつは、これをやった瞬間にAGIを作れる唯一のヒーローOpenAIの物語が崩れるのでできないと思います。
最後に今回のGemini3.0やNano Banana Pro(実際には二つは独立のモデルではなく、Nano Bananaの方はGemini3.0の画像出力機能のようですが)に関して研究上重要だったことは、事前学習のスケーリングがまだ有効であることが明らかになったことだと思います。
ここまでひたすらスケーリングを強調してきてアレですが、実際には2024年後半ごろから、データの枯渇によるスケーリングの停滞が指摘されていること、また今年前半に出たスケーリングの集大成で最大規模のモデルと思われるGPT-4.5が失敗したことで、単純なスケーリングは成り立たなくなったとされていました。その一方で、
去年9月に登場したOpenAIのo1やDeepSeekによって、学習が終わった後の推論時スケーリング(生成AIが考える時間を長くする、AIの思考過程を長く出力する)が主流となっていたのが最近です。
OpenAIはそれでもGPT-5開発中に事前学習スケーリングを頑張ろうとしたらしいのですが、結局どれだけリソースを投下しても性能が伸びないラインがあり、諦めたという報告があります。今回のGemini3.0に関しては、関係者の発言を見る限り、この事前学習のスケーリングがまだ有効であり、OpenAIが直面したスケーリングの限界を突破する方法を発見していることを示唆しています。
これはもしかしたら、単なるお金をかけたスケーリングを超えて、Googleの技術上の「秘伝のタレ」になる可能性もあり、上記で書いた以上の強みを今回Googleが手にした可能性もあると考えています。
本当はもっと技術的に細かいことも書きたいのですが、基本的な考えは以上となります。色々と書いたものの、基本的には両者が競争してもらうことが一番技術発展につながるとは思います! November 11, 2025
1RP
#ウマ娘
#ウマ娘X風怪文書
『筒井筒』
…『つついづつ』と読むこの言葉、『伊勢物語』を読んだことのある方なら覚えてる人もいるんじゃないですかね??
てなワケで、ハイドラセンセに乗っからせていただきました。<(_ _)> https://t.co/GCAEQZc3CE https://t.co/IbLb0oXR0U November 11, 2025
昨夜のスペースで公益通報者保護法の話になってたんだけど(寝ぼけながら・・すみません)
僕は公益通報ですらないし、保護法に当てはめる必要もないと思ってる。
①怪文書の延長である事
②内容が稚拙
③証拠を提示できる内容でない
▶️公選法や政治資金パーティーのくだりは、前井戸知事がやってたから、斎藤知事もやってるという先入観で書いてる。(重要)
▶️キックバック 二つの事柄を単につなぎ合わせただけ
▶️五百旗頭先生の記述は問題外
▶️コーヒーメーカー・・元産労次長の勘違いを鵜呑み
こんな文書を公益通報だとしたら、これからしようとする人があんなものでいいと勘違いするわ😫 November 11, 2025
クーデター顛末記に知事を馬鹿にする記述も発見したわ😭
「知事は本読みが下手過ぎる」
本読み・・議会で説明することなんだけど、あからさまに馬鹿にする記述を残してた🤔
3/12怪文書も寧ろ、知事を馬鹿したものかもしれない🤔
クーデターに対する反クーデター🤔 https://t.co/30RmOwwXGR November 11, 2025
忘れていたけど、そう言えばテレ東にもそういう怪文書が来て、調べたけどそのような事実はないということになったんだったよなあ。
国分さんすらわからないものが文春にはわかったという。
松本さんや中居さんと同じ手口を感じる。
不審この上ないなあ。 https://t.co/V5Qv3JoZVf November 11, 2025
あくまで私にはそう見えるというだけの話なんですけど、鶴丸さんは、途方もなく優しい刀だなという印象なんですよ、という怪文書です。
以降、とにかく鶴丸国永の話をしています。修行手紙やら回想やらのネタバレ含みます、たぶん。ほぼ妄想ともいえる。 https://t.co/2m4u0Uuy50 November 11, 2025
【#性当夜 in 川崎2025】性癖公募結果まとめ【怪文書】
大変お待たせしました!今年の #性当夜川崎 の公募結果ブログを公開しました!
過去一味が濃い結果となりました、ご参加していただいた皆様本当にありがとうございました!
https://t.co/kI4IrrLH7P
⬇️審査員特別賞等はツリー先に⬇️ https://t.co/tXv5PHjqD5 November 11, 2025
<ポストの表示について>
本サイトではXの利用規約に沿ってポストを表示させていただいております。ポストの非表示を希望される方はこちらのお問い合わせフォームまでご連絡下さい。こちらのデータはAPIでも販売しております。



