プログラミング言語 トレンド
0post
2025.12.03 14:00
:0% :0% (-/男性)
人気のポスト ※表示されているRP数は特定時点のものです
📝正直に言います
このレポートを読んで、私は少し怖くなりました
一方でワクワクも増しました
Anthropicが自社のエンジニア132人を調査し、53人に深掘りインタビューまで行った内部レポート。普通、企業ってこういう「都合の悪いこと」は隠したがるじゃないですか。
でもこのレポート、AIがもたらす『希望』と『不安』の両方を、驚くほど正直に語っているんです。
なぜ怖くなったか?
それは、ここに書かれていることが「AIを作っている側の人たち」のリアルな声だから。つまり、私たちの数カ月…数年後の姿かもしれない。
まず数字から見ていきましょう。
Anthropicのエンジニアたちは現在、仕事の60%でClaudeを使い、生産性は50%向上したと報告しています。
1年前は? 仕事の28%で使用、生産性向上は20%。
つまり、たった1年で使用率は2倍以上、生産性向上も2.5倍。このスピード感、ちょっと異常じゃないですか?
でも私が本当に興味を持ったのは、この先の話なんです。
『やらなかったはずの仕事』が27%も生まれている。
これ、すごく重要なポイントだと思うんです。
AIで既存の仕事が速くなる——これは誰もが想像できる。でも実際に起きているのは、それだけじゃない。
エンジニアたちはこう語っています。
「以前は優先度が低くて放置していた『ペーパーカット』に手が回るようになった」
ペーパーカットって何かというと、紙で指を切るような小さな痛み。コードの世界では、構造の悪いコードのリファクタリングとか、あったら便利なツールの作成とか、そういう「やりたいけど時間がなくて後回しにしていたこと」を指します。
実際、Claude Codeの利用データを分析すると、タスクの8.6%がこのペーパーカット修正だったそうです。
これ、地味に見えて実はめちゃくちゃ大きな変化だと思うんですよね。なぜなら、こういう小さな改善の積み重ねが、長期的には組織の生産性を根本から変えるから。
もう一つ、読んでいて「これは...」と思ったのが『フルスタック化』の話。
あるバックエンドエンジニアのエピソードが印象的でした。
Claudeと何度もやり取りしながら複雑なUIを構築したところ、デザイナーに見せたら驚かれたそうです。
「待って、これあなたが作ったの?」
「いや、Claudeが作った。僕はプロンプトを出しただけ」
このエンジニア、自分では「絶対にできなかった」し「期限内には間に合わなかった」と言っています。
別のエンジニアはこう語っています。
「以前は触るのが怖かったフロントエンドやトランザクションデータベースも、今は自分で扱えるようになった」
研究者がデータの可視化を自分で作る。セキュリティチームが不慣れなコードベースを分析する。非技術系の従業員がデバッグやデータサイエンスをこなす。
Claudeのタスク分析を見ると、チームごとに使い方が全然違うんです。でも共通しているのは、みんなが「自分の専門外」に手を伸ばせるようになっていること。
数週間かかっていたプロセスが、同僚との「数時間の作業セッション」で完結することもあるそうです。
すごい時代になったなぁ...と思いますよね。
でも、ここからが本題なんです。
レポートで最も考えさせられたのが『監督のパラドックス』という概念。
これ、本当に深い問題だと思うんですよ。
AIを効果的に使うには、その出力を監督する能力が必要。でもその監督能力は、実際にコードを書く経験から培われる。ところがAIを使いすぎると、その経験を積む機会が減ってしまう——という矛盾。
あるエンジニアはこう表現しています。
「以前なら難しい問題を自分でデバッグする過程で、ドキュメントやコードを読み込んで、システムがどう動くかのメンタルモデルを構築していた。Claudeはすぐに問題の核心にたどり着けるから、そういう時間が大幅に減っている」
別の人も言っています。
「新しいツールの設定を全部調べて理解していたのに、今はAIに使い方を聞くだけ。だから専門知識が身につかない。同僚との会話で『それ知ってる』と即答できていたことが、今は『AIに聞かないとわからない』になっている」
これ、すごくリアルな声だと思いませんか?
特に印象的だったのが、あるシニアエンジニアの言葉。
「私がAIを使うのは、主に『答えがどうあるべきか』を既に知っている領域。その能力は、かつてSWE(ソフトウェアエンジニアリング)を『ハードな方法』でやることで身につけたもの。でも自分がキャリア初期だったら、モデルの出力を鵜呑みにせず、意図的に自分の能力を伸ばす努力が必要だと思う」
ここに、AI時代の学習における核心的な課題があると思うんです。
「楽」と「成長」のトレードオフ
出力を簡単に得られるからこそ、「じっくり学ぶ時間を取る」ことが難しくなる。
一部のエンジニアは対策として、意図的にAIなしでコードを書く練習をしているそうです。
「Claudeが問題を解決できると分かっていても、あえて頼まないことがある。自分を鋭く保つために」
この姿勢、すごく大事だと思うんですよね...。
一方で、こんな反論もありました。
「『錆びつく』という発想は、コーディングがいつかClaude 3.5以前の状態に戻るという前提に依存している。でも僕はそうは思わない」
これも一理ある。
ソフトウェアエンジニアリングは過去にも抽象化のレベルを上げてきました。アセンブリ言語から高級言語へ、手動のメモリ管理から自動ガベージコレクションへ。
今、英語がプログラミング言語になりつつあるのかもしれない。
あるスタッフはこう提案しています。
「これからのエンジニアは、AIにコードを書かせることに習熟し、より高レベルな概念とパターンの学習に集中すべきだ」
抽象化が進めば、低レベルの知識は必要なくなる——理論上は。
ただ、別のエンジニアが指摘していたように、「高級言語への移行で、ほとんどのエンジニアはメモリ処理に関する深い理解を失った」のも事実。抽象化にはコストが伴う。
どちらの視点が正しいかは、正直まだ誰にも分からない。でも両方の視点を持っておくことが大事なんじゃないかと思うんです。
個人的に一番グッときたのが、『職人技と意義』についての議論でした。
エンジニアたちの声が、見事に二極化しているんです。
ある人は言う。
「25年間プログラミングを続けてきた私にとって、これは時代の終わり。そのスキルセットに自信を持てることが、職業的な満足感の核だった」
「一日中Claudeにプロンプトを出すのは、あまり楽しくないし充実感もない。音楽をかけて没頭して、自分で実装するほうがずっと楽しい」
一方で、こういう声も。
「コードをリファクタリングするときの禅のようなフロー状態...確かに失った部分もある。でも今は生産性が劇的に上がったから、喜んで手放す」
そして、こんな発見をした人も。
「この時点で、怖くなったり退屈になったりすると思っていた。でも実際はどちらも感じない。代わりに、ずっと多くのことができるようになってワクワクしている。コードを書くこと自体を楽しんでいたと思っていたけど、実は『コードを書くことで得られるもの』を楽しんでいたんだ」
これ、すごく深い気づきだと思うんですよね。
自分が仕事のどの部分に意義を感じているか——手段なのか、結果なのか。AI時代は、この問いに向き合わざるを得なくなる。
職場の人間関係にも、静かだけど確実な変化が起きています。
「質問の80〜90%はClaudeに行く」
かつて同僚に向けられていた質問が、まずAIに向かうようになった。Claudeがルーティンな問い合わせを処理し、人間はAIの能力を超える複雑な問題だけを担当する——そんなフィルタリング機構が生まれている。
「同僚の誰よりもClaudeと遥かに多く働いている」という声も。
興味深いのは、これを肯定的に捉える人と否定的に捉える人がいること。
「同僚の時間を奪うことへの罪悪感がなくなった」——これは楽になった側の声。
「『Claudeに聞いた?』が一般的な反応になるのは好きじゃない。人と直接働くことを本当に楽しんでいるし、すごく大事にしている」——これは寂しさを感じている側。
あるシニアエンジニアの言葉が、少し切なかったです。
「若手が質問に来る頻度が減ったのは悲しい。でも彼らは確実に、より効果的に答えを得て、より速く学んでいる」
メンターシップの形が変わりつつある。それが良いことなのか悪いことなのか、まだ誰にも分からない。
キャリアの未来について、エンジニアたちの本音が語られていました。
多くの人が、自分の役割が「コードを書く人」から「AIを管理する人」へとシフトしていると感じている。
「仕事の70%以上が、純粋なコードライターではなく、コードレビュアー・リバイザーにシフトした」
「1人、5人、または100人のClaudeの仕事に責任を持つこと——それが将来の役割の一部だと思う」
短期的には楽観的な人が多い。でも長期的には...?
「短期的には楽観的。でも長期的にはAIがすべてをやり遂げて、自分や多くの人を無関係にすると思う」
「毎日仕事に来るたび、自分の仕事をなくしているような気がする」
こういう声を読むと、胸が締め付けられる思いがします。
でも前向きな視点もありました。
「ジュニア開発者のことは心配だけど、彼らは新しいテクノロジーに最も貪欲でもある。この職業の軌道について、僕はかなり楽観的だ」
そして、こんな適応戦略も。
「AIの仕事を意味のある形でレビューするスキルを開発するには、より多くの時間とより深い専門化が必要になる」
「合意形成により多くの時間を費やし、実装はAIに任せるようになるだろう」
「Claudeからフィードバックをもらうことで、物事を学ぶ速度が完全に変わった。天井が砕けたような感覚」
━━━━━━━━━━━━
最後に、あるチームリーダーの言葉を紹介させてください。
「誰も何が起こるか知らない。重要なのは、本当に適応できることだ」
このレポートを読んで思ったのは、AIがもたらす変化に「正解」はないということ。
生産性は上がる。新しい可能性も広がる。でも同時に、大切なものを失うリスクもある。
技術的な専門知識の維持。有意義な協業の形。学習とメンターシップのあり方。キャリア開発の新しいアプローチ。
Anthropicは2026年に、より具体的な対応策を共有予定だそうです。彼ら自身が「責任ある職場移行の実験場」として、この変革を乗りこなす方法を模索している。
私たちも、このレポートを他人事として読むのではなく、「数年後の自分」として読んでみる価値があるんじゃないかと思いました。
長文読んでいただきありがとうございます
※この図解の作り方は今回発行したニュースレターで作り方を紹介しています リプ欄へ↓ December 12, 2025
<ポストの表示について>
本サイトではXの利用規約に沿ってポストを表示させていただいております。ポストの非表示を希望される方はこちらのお問い合わせフォームまでご連絡下さい。こちらのデータはAPIでも販売しております。



