Google トレンド
0post
2025.11.28 01:00
:0% :0% (40代/男性)
人気のポスト ※表示されているRP数は特定時点のものです
if 你关注 ai,then 推荐观看这部 deepmind 纪录片。
尤其适合家庭观看,顺便聊一聊 ai、游戏、思考等话题。每天吃饭看一点,三次就能看完。
这部纪录片去年就电影节放映了,但昨天google 把全片在youtube 上免费放出来了。
非常有趣的是纪录片的名字:《思考游戏》(the thinking game)。
可以说,最让人敬佩的,不是 demis 得了诺贝尔奖,不是 demis 的智商,而是那种“把世界当成一场思考游戏”的眼光。
======
如果把整个人类文明看成一场漫长的“思考游戏”,这部片子讲的,就是一群人如何把这场“思考游戏”本身拆开、重写规则的故事。
对他们来说,棋盘、街机游戏、星际争霸、蛋白质折叠,甚至整座虚拟世界,都只是训练一种东西的道具:通用智能。
Demis 的人生像一条被同一问题穿线的轨迹:少年国际象棋天才,在教堂里熬到第十个小时,突然意识到,也许把几百个顶尖大脑锁在一间大厅里只为分出输赢,是在浪费心智;于是转向游戏设计,用主题公园里的“呕吐连锁反应”去逼真模拟人类行为;再到剑桥研究大脑,从神经科学里偷师,最后拉上 Shane,干脆在伦敦创立 DeepMind,明目张胆地说:我们要做 artificial general intelligence。
他们选择了一条看起来很“不务正业”的路径:先让系统学会在 Atari 里打 Pong、挖 Breakout 的侧翼隧道,再去下围棋、打星际。强化学习、奖励信号、环境与智能体的闭环,在这些游戏里被一次次打磨:系统一开始连挡球都不会,只知道分数越高越好,最后却能在围棋上下出连职业棋手都无法想象的招法,能在星际里练出堪比职业选手的多线操作。这里有一种残酷的坦诚:你不告诉机器规则,只给目标,它会自己找到通向高分的“人类从没想过”的路径。
但真正让这条路线显出重量的,是当他们把同样的思维搬到现实科学问题上。蛋白质折叠这个自 20 世纪 60 年代就存在的难题,几十年里无数聪明人试过,都卡在实验慢、数据少上。第一次参加 CASP 比赛,他们的 AlphaFold 确实赢了同行,却只是在“一个没人解好的问题上解得稍微好一点”。团队后来回看那一届,很坦白:我们知道自己还很烂,这只是最高的梯子,但月亮还在很远的地方。
转折来自第二次“总攻”:重写数据管线,把物理与生物学的结构知识真正喂进模型,让系统不再只是模仿,而是内化约束。最终在 CASP14 上,他们的结构精度几乎等于按下按钮得到实验级结果,主持人说,经过半个世纪,这个问题可以宣布被解决了。接下来的一步更激进:既然可以在一个月里预测全已知物种的蛋白质,那就别等别人排队提交序列,直接把全地球的蛋白质都“折完”,免费公布,让它成为人类生物学的基础设施。
技术从来不是中性的玩具。AlphaGo 之后的“Sputnik moment”、AI 军备竞赛的隐喻、与曼哈顿计划的对照、对 autonomous weapon 的明确拒绝,以及对 move fast and break things 的公开反感,都在提醒一个事实:当你试图造出一种比人类更强的认知系统时,你不是在做一个新 app,而是可能在改写历史的分界线。连 DeepMind 自己的人都开始担心:也许我们将来要做的,不是说服世界我们已经造出了智能,而是解释我们还没到那一步。
这部片子最有价值的地方不在于追星 DeepMind,而在于它把几个关键问题扔在桌面上:什么叫“通用”的学习能力?在一个只看奖励的系统里,价值是如何被编码、被放大的?科学探索和工程冲刺之间,节奏如何拿捏,才不会“死在时间轴上”?当智能被外包给机器,人类该把注意力放在哪里——是新的问题意识、新的制度与治理,还是对自身价值观的重新书写?
也许真正值得我们模仿的,不是某个算法或产品,而是那种“把世界当成一场思考游戏”的眼光:敢于承认自己暂时还很烂,敢于在失败里调整节奏,也敢于在成功时把成果毫无保留地推向全人类。
https://t.co/OzJmSucWt9 November 11, 2025
11RP
推友强烈推荐的GiffGaff手机卡,它来了!
🔥 10英镑用20年的英国手机号,你敢信?
注册ChatGPT、Google、TikTok总是卡在手机验证?
某宝虚拟号接码不稳定,国内手机号隐私泄露担心?
月租卡保号成本太高,停机后号码就废了?
👉 如果以上任何一个痛点戳中了你,这篇文章能帮你省下90%的烦恼。
今天要聊的,是一张神奇的英国手机卡——GiffGaff。
10英镑充值一次,理论使用20年+,这可能是全网成本最低的海外保号方案。
💡 为什么选GiffGaff?6大理由让你无法拒绝
✅ 真0月租 — 充10英镑,每半年发1条短信(0.3英镑)保号,一年成本不到6块钱
✅ 欧洲号码硬通货 — +44英国区号,ChatGPT/Google/Telegram/海外银行全认
✅ 完全匿名 — 无需护照、无需人脸、无需实名(你懂的)
✅ 新人直接送5英镑 — 通过邀请链接注册,充10到账15
✅ 可转eSIM — 虽然是实体卡,但可转虚拟卡(后续出教程)
✅ 验证码秒到 — 实测Google/TikTok/ChatGPT接码速度飞快
📦 怎么搞到这张卡?3种方案对比
方案1:官网免费申请(佛系玩家专属)
🔗 申请地址:https://t.co/GTBVfzTki4
·优点:完全免费,包邮到国内,可申请多张
·缺点:
⚠️ 平邮无法追踪,能否过海关全凭运气
⚠️ 等待周期半个月到2个月不等
⚠️ 收不到就是收不到了,无售后
适合人群:不急用,愿意碰运气的玩家
方案2:转运地址(直接放弃)
·通过英国转运公司收货后转运到国内。
·结论:转运费 > 卡价值,完全不划算,不推荐。
方案3:找代理购买(推荐⭐⭐⭐⭐⭐)
优点:确定收货,3-7天到手,省心省力
价格参考:
·淘宝/闲鱼:30-60元/张
·私人代理:价格略高但服务更好
注意事项:
·选成交量>500、评分>4.8的卖家
·确认是否包激活服务
·询问能否支持邀请奖励(5英镑)
💡 小技巧:即使代购,也可以先用邀请链接填写邮箱,后续用该邮箱激活代购的卡,理论上能拿到5英镑奖励(未验证,可试试)
🛠️ 激活教程(保姆级,一步不落)
第1步:进入激活页面
访问官网:https://t.co/P14M4x4PtZ
下滑找到 "Activate your SIM"
第2步:输入激活码
📍 激活码在卡片背面,别和19位SIM卡号搞混
第3步:填写邮箱
💡 推荐:Gmail / Outlook / Proton
❌ 不推荐:QQ邮箱 / 163邮箱(可能收不到邮件)
第4步:创建密码
要求:至少8位,包含大小写字母+数字,建议用密码管理器生成
第5步:跳过营销选项
是否接收优惠活动?选 "No",出生年份随便填或不填
第6步:选择套餐(关键!)
⚠️ 重点:页面会推荐各种月租套餐,全部忽略
正确操作:
·下滑到页面底部
·找到 "Pay as you go"(按需付费)
·点击进入
第7步:充值(最低10英镑)
💳支付方式:Visa / Mastercard(不支持支付宝/微信)
💡 没有信用卡?
·申请虚拟信用卡(Dupay / Nobepay等)
·找代理代充(需手续费)
📝 填写信息:姓名/地址随便填,不需要真实
第8步:完成支付
✅ 支付成功后:
·账户余额:15英镑(10英镑充值+5英镑奖励)
·获得手机号:个人资料中查看(+44开头)
⏱️ 等待时间:约2小时后可插卡使用
📱 插卡测试(实战效果)
信号测试
·插卡立刻显示信号
·国内显示 "中国联通" 或 "中国移动"(漫游)
·正常接收短信
验证码接收测试
✅ Google注册:秒收✅ TikTok注册:秒收✅ ChatGPT注册:正常✅ Telegram注册:正常✅ 海外银行短信:支持(Wise、Revolut等)
🔄 保号攻略(每半年操作一次)
GiffGaff保号规则:每180天余额需有变动
最省钱方案:发短信保号
·💰 成本:0.3英镑/条
·📅 频率:每半年发1条
🧮 年成本:0.6英镑(约¥5.5)
·📊 可用年限:15英镑÷0.6=25年
操作步骤:
1.打开手机短信
2.发送任意内容到任意英国号码(如+447000000000)
3.扣费0.3英镑→保号成功
💡 小技巧:设置手机日历提醒,每6个月提醒一次
🎯 一句话总结
10英镑用20年+完全匿名+欧洲号码认可度高+可转eSIM
如果你需要一个长期稳定的欧洲手机号,GiffGaff可能是目前综合成本最低的方案。
推友都在推荐😏
有需要的朋友,冲就完了。 November 11, 2025
5RP
2025年,我的几个第一性原理:
1. LLM token一定会越来越便宜,模型越来越强大,记住,所有做LLM Agent的人,都必须思考如何用10~1000倍的token带来革命,而不是他妈跟个傻逼似的天天想着省token;
2. chatbot的形式一定会被消灭,no chatbot revolution才是正确方向,一切AI应用不可能 、不应该、绝对不是一个个大号聊天机器人,一个个大对话框等着人大段大段往里敲字,
记住,所有AI产品必须重新设计,一切chatbot AI应用必定会被改写成NO CHATBOT形式,无一例外,chatbot的产品形态必然会彻彻底底、完完全全地淘汰,
或者那个傻逼一样的对话框,至少作为二等公民出现;
3. AI助手一定不能用“按个按钮”、“截个图”、“上传个文件”,再写个长长的prompt的形式出现,让用户解决个问题,先让用户点点按按十几次,
AI助手一定是具有强侵入性的,一定能主动嗅探一切环境,吞掉一切数据和信息,一定会主动在后台观察一切操作和行为——并且在疑似需要帮助的时候,主动弹出个对话框,用户一键确认后,主动接管,主动解决一切问题,
而绝不应该像准备个考试一样,准备文件、准备截图、准备一大堆按钮、准备一大长串prompt,让用户跟个大傻逼似的,手忙脚乱地在那儿表演,
总而言之,无论是商业落地的AI Agent,还是各种办公软件、工具、生活类的AI Agent,一个个不仅是傻逼兮兮的大黑框chatbot,而且要用户手动输入一大堆文件、图表、链接、信息,再敲一大段prompt——这些全都走了大弯路,
toC的无缝衔接强入侵的主动AI Agent助手,完完全全不会给你任何告诉他的机会,而是让AI Agent主动判断你是否需要我,直接给你一个大大的对话框,简单描述一下“我计划怎么帮助你”——你点一下确定,它来解决后面所有的事情。
4. 一切能用coding解决的问题,都是SWE Agent能解决的问题,也就是说,都可以直接拿claude code这类工具套壳来用,
SWE Agent这个形态,最擅长解决的问题,就是在一个确定的环境(一台机器、几台机器、若干仿真环境、一套terminal里的编译器/脚手架/运行环境/包管理、profiling和debugging方法)解决的问题,
而用coding解决的问题,从来都不止coding,一切VHDL/Verilog等电路设计、电路simulation和validation、一切类似labview和matlab simulink中可以仿真的电机、信号、示波器等等模块,
甚至ansys和CAD这类工具,还有大量data science和计算的问题,以及用lean或者formal-proof解决一些proof-based的数学和模型问题,都可以转化成一些API和coding解决的问题,然后让SWE Agent来解决,
这类问题可以叫做“一台机器上的确定环境下的问题”,
这类问题的特点是,可以靠LLM的智能不断拆分成一大堆subtasks,然后在本地环境下反复尝试、反复试错、反复看output、反复试验结果,失败后再换一个新的approach;
5. full self coding(https://t.co/W0qe8YtsYX)就是基于上面所有第一性原理的一个试验。
我将会设计一套侵入式试验,让10~500个ai agent组成一组,给一个github项目找出所有潜在的问题,包括文档、测试、修bug、优化、重构、完成todo list、加功能、加API等等,让10~100个agent并行完成这个repo潜在需要完成的所有任务,
并且让至少10组这样的agent去github上面公开贡献,等于在没有任何人为输入prompt的前提下,造出来1000~5000个agent在开源世界源源不断地做出贡献,就死死赖在github上面,尝试修复一切可能修复的潜在问题,做出贡献。
请你记住full self coding是最坚决贯彻test-time scaling law的行为,
full self coding坚决相信,人是ai agent世界最傻逼、最慢、错误最多、判断失误最高的存在,让程序员手敲prompt,无异于给AI Agent拖后腿,
只有先分析出问题,然后让10~500个agent同时并行运行,才能最大化执行的效率,最快速度解决已经发现的问题,无休止地为github提供潜在的有价值贡献——并且最关键的是,把“敲prompt的程序员”这个最垃圾、最慢、出错最多的环节彻底消除;
6. full self coding最大的瓶颈,一个是token价格过高,一个是目前几乎所有主流供应商,LLM inference速度过慢,
所以我最后的一个想告诉大家的价值观是:
groq、sambanova、cerebras这种在片上堆满几个GB的SRAM,在inference上效率是nvidia、amd、google TPU这些落后架构的10~50倍,这是test-time scaling law的最后一环,
如果人类在claude code、gemini cli上全面接入groq、sambanova、cerebras上host的模型,所有速度都会再快10~50倍,
现在最大的问题是,groq、sambanova、cerebras他们只能白嫖开源模型(deepseek、qwen、zai甚至更难用的llama),因为这三家自己没能力训练模型,本质是卖芯片的(实际是自己造完data center后卖API),
但是只要中国几家厂商能源源不断输送最好的开放weights的模型,让groq、sambanova、cerebras持续用上他们能用的最好的开放weights的模型,这三家最终会把nvidia、google tpu连同他们的客户一锅端。
人类依然非常需要LLM inference的时间上的飞速优化,只不过现在人们需要更强的模型,而人类愿意为此多等等时间,
但是终归有一天人们会发现,无论是coding,还是在各种infra中快速反馈相应,哪怕是简单的搜索或者问答,inference速度这件事才是至关重要。 November 11, 2025
5RP
@Parsonalsecret youtubeで見た広告ですね。
詐欺と報告しても運営のGoogleに無視されるんですよねぇ…
中国詐欺クーラーで叩かれたのに、懲りずに今度は詐欺ヒーターの広告流しまくってるし、一度摘発された方が良いんじゃないでしょうか November 11, 2025
4RP
NVIDIAの最大のライバルはAMDでもGoogleでもない。「物理学」だ。市場が次世代GPUの性能に熱狂している裏で、データセンターの現場では静かな、しかし致命的な「物理的敗北」が確定しつつあることを、どれだけの人が理解しているだろうか。
ぼくらが直面しているのは、単なるチップの進化ではない。熱力学という宇宙のルールが突きつける「120kWの壁」という絶対的な限界点だ。
「空冷」の時代は終わった。
これは比喩ではない。物理的に、空気という媒体ではもはやAIを支えきれないのだ。最新のBlackwell世代、特にGB200 NVL72が突きつけた現実はあまりに残酷だ。1ラックあたり120kW。この熱密度は、従来のハイパースケールデータセンターの4倍から6倍に達する。
これを「風」で冷やすことが、いかに狂気じみているか想像してほしい。
空冷で120kWを制御しようとすれば、データセンターはもはや計算する場所ではなく、巨大な暴風実験室と化す。ここで発生するのは2つの絶望的な現象だ。
一つは「寄生負荷(Parasitic Load)」の暴走。
空気は熱を運ぶ効率があまりに悪い。そのため、熱を排出するためだけにファンを限界まで高速回転させる必要がある。その結果、供給される電力の20%から30%が、計算ではなく「ファンを回すためだけ」に消えていく。AIを動かしているのか、巨大な扇風機を動かしているのか、もはや区別がつかない本末転倒な事態だ。
もう一つは、より深刻な「音響による破壊」だ。
120kWを空冷するためのファンノイズは、ジェットエンジンの至近距離に匹敵する音圧を生む。この凄まじい「音の振動」は、サーバー内のHDDの読み書き性能を物理的に低下させ、さらには精密な基板のはんだ接合部さえも破壊するリスクがある。
つまり、空冷を維持しようとすれば、AIはその「叫び声」で自らの身体を壊してしまうのだ。
だからこそ、産業全体が「水」へと舵を切る。これは選択肢の一つではなく、唯一の生存ルートである。
液体は空気の約4,200倍の熱容量を持つ。水冷(液冷)への移行は、単なる冷却方式の変更ではない。人類がシリコンバレーで築き上げてきたインフラの「血管」を、すべて引き抜いて交換するレベルの「総取り替え工事」を意味する。
NVIDIAという「脳」が進化すればするほど、その脳を冷やすための「心臓(ポンプ)」と「血管(配管・CDU)」、そして「冷媒」を支配する企業の価値は、指数関数的かつ不可逆的に高まっていく。
「AIバブル」などという言葉で思考停止する前に、足元を見てほしい。そのサーバーラックは、熱力学の審判に耐えられる設計になっているか?
物理法則は、株価のように反発してはくれない。限界を超えれば、ただ静かに、システムを焼き尽くすだけである。 November 11, 2025
3RP
clash verge 的链式代理模式有bug!存在连接不稳定掉线的问题,我找到了解决办法
可以用这个提示词让gemini3pro把节点连接到静态代理的过程变成一个点击即连的节点,不需要再去点击那个有bug的链式代理模式了
提示词如下:
请你扮演一位精通 Clash 配置的专家。我需要你帮我修改并重新编写一份完整的 Clash Verge 配置文件(YAML格式)。
我的需求如下,请严格执行:
1. **添加静态IP节点**:
依据我提供的以下信息,添加一个 Socks5 类型的节点:
* IP:
* 端口:
* 用户名:
* 密码:
* 名称:
2. **创建自动优选入口(前置节点)**:
* 创建一个名为 `⚡️ 自动优选 (入口)` 的策略组。
* 类型必须是 `url-test`(自动测速),间隔 `300` 秒。
* 请从我下方提供的配置文件中,提取所有正常的机场节点(如香港、美国、倭国、新加坡等)放入这个组,让它自动选择延迟最低的节点。
3. **创建链式代理(核心需求)**:
* 创建一个名为 `🔗 静态IP链式 (最终)` 的策略组。
* 类型必须是 `relay`(中继/链式)。
* 顺序必须是:`⚡️ 自动优选 (入口)` -> `🇺🇸 静态IP-华盛顿`。
4. **整合策略组**:
* 将这个 `🔗 静态IP链式 (最终)` 组,加入到主要的策略组选项中(如 OpenAI, Google, TikTok, 以及主漏网之鱼 Proxy 组),方便我手动切换。
5. **数据来源**:
* 保留原本的规则(Rules)和 DNS 配置。
* **下面是我这台电脑当前的配置文件内容(或订阅内容),请基于此内容提取节点并生成新配置:**
[ ] November 11, 2025
3RP
Gemini3, Nano Banana Pro登場で, 先月時点で私がTBSの以下番組で「OpenAIは危うい.Googleが勝つ」としてたのが注目(特に投資家層?)されてるようです
実際は公には以下記事で2024年OpenAI絶頂期からずっとGoogle有利とみてます
長い(私のX史上最長)ですが根拠, OpenAI vs Googleの展望を書いてみます
先月のTBS動画:https://t.co/kgWcyTOTWK
2024年6月の記事:https://t.co/4HEhA4IJQa
参考のため、私がクローズドな投資家レクなどで使う資料で理解の助けになりそうなものも貼っておきます。
※以下はどちらかというと非研究者向けなので、研究的には「当たり前では」と思われることや、ちょっと省略しすぎな点もあります。
まず、現在の生成AI開発に関して、性能向上の根本原理、研究者のドグマ的なものは以下の二つです。基本的には現在のAI開発はこの二つを押さえれば大体の理解ができると思います。両者とも出てきたのは約5年前ですが、細かい技術の発展はあれど、大部分はこの説に則って発展しています。
①スケーリング則
https://t.co/WKl3kTzcX5
②SuttonのThe Bitter Lesson
https://t.co/esHtiJAcH9
①のスケーリング則は2020年に出てきた説で、AIの性能は1)学習データの量、2)学習の計算量(=GPUの投入量)、3)AIのモデルサイズ(ニューラルネットワークのパラメータ数)でほぼ決まってしまうという説です。この3つを「同時に」上げ続けることが重要なのですが、1と3はある程度研究者の方で任意に決められる一方、2のGPUはほぼお金の問題になります。よって、スケーリング則以降のAI開発は基本的にお金を持っている機関が有利という考えが固まりました。現在のChatGPTなどを含む主要な生成AIは一つ作るのに、少なく見積もってもスカイツリーを一本立てるくらい(数百億)、実際には研究の試行錯誤も含めると普通に数千億から数兆かかるくらいのコストがかかりますが、これの大部分はGPUなどの計算リソース調達になります。
②のThe Bitter Lessonは、研究というよりはRichard Suttonという研究者個人の考えなのですが、Suttonは現在のAI界の長老的な人物で、生成AI開発の主要技術(そして私の専門)でもある強化学習の事実上の祖かつ世界的な教科書(これは私達の翻訳書があるのでぜひ!)の執筆者、さらにわれわれの分野のノーベル賞に相当するチューリング賞の受賞者でもあるので、重みが違います。
これは端的にいうと、「歴史的に、AIの発展は、人間の細かい工夫よりも、ムーアの法則によって加速的に発展する計算機のハードの恩恵をフルに受けられるものの方がよい。つまりシンプルで汎用的なアルゴリズムを用い、計算機パワーに任せてAIを学習させた方が成功する。」ということを言っています。
①と②をまとめると、とにかく現状のAIの性能改善には、GPUのような計算リソースを膨大に動員しなければならない。逆に言えばそれだけの割と単純なことで性能上昇はある程度約束されるフェーズでもある、ということになります。
これはやや議論を単純化しすぎている部分があり、実際には各研究機関とも細かいノウハウなどを積み重ねていたり、後述のようにスケーリングが行き詰まることもあるのですが、それでも昨今のAI発展の大半はこれで説明できます。最近一般のニュースでもよく耳にするようになった異常とも言えるインフラ投資とAIバブル、NVIDIAの天下、半導体関連の輸出制限などの政治的事象も、大元を辿ればこれらの説に辿り着くと思います。
以下、この二つの説を前提に話を進めます。
公にはともかく私が個人的に「OpenAIではなくGoogleが最終的には有利」と判断したのはかなり昔で、2023年の夏時点です。2023年6月に、研究者界隈ではかなり話題になった、OpenAIのGPT-4に関するリーク怪文書騒動がありました。まだGoogleが初代Geminiすら出してなかった時期です。(この時期から生成AIを追っている人であれば、GPT-4のアーキテクチャがMoEであることが初めて明らかになったアレ、と言えば伝わるかと思います)
ChatGPTの登場からGPT-4と来てあれほどの性能(当時の感覚で言うと、ほぼ錬金術かオーパーツの類)を見せられた直後の数ヶ月は、さすがに生成AI開発に関する「OpenAIの秘伝のタレ説」を考えており、OpenAIの優位は揺らがないと考えていました。論文では公開されていない、既存研究から相当逸脱した特殊技術(=秘伝のタレ)がOpenAIにはあって、それが漏れない限りは他の機関がどれだけお金をかけようが、まず追いつくのは不可能だと思っていたのです。しかし、あのリーク文書の結論は、OpenAIに特別の技術があったわけではなく、あくまで既存技術の組み合わせとスケーリングでGPT-4は実現されており、特に秘伝のタレ的なものは存在しないというものでした。その後、2023年12月のGemini初代が微妙だったので、ちょっと揺らぐこともあったのですが、基本的には2023年から私の考えは「最終的にGoogleが勝つだろう」です。
つまり、「スケーリングに必要なお金を持っており、実際にそのAIスケーリングレースに参加する経営上の意思決定と、それを実行する研究者が存在する」という最重要の前提について、OpenAIとGoogleが両方とも同じであれば、勝負が着くのはそれ以外の要素が原因であり、Googleの方が多くの勝ちにつながる強みを持っているだろう、というのが私の見立てです。
次に、AI開発競争の性質についてです。
普通のITサービスは先行者有利なのですが、どうもAI開発競争については「先行者不利」となっている部分があります。先行者が頑張ってAIを開発しても、その優位性を保っている部分でAIから利益を得ることはほとんどの場合はできず、むしろ自分たちが発展させたAI技術により、後発事業者が追いついてきてユーザーが流出してしまうということがずっと起きているように思われます。
先ほどのスケーリング則により、最先端のAIというのはとても大きなニューラルネットワークの塊で、学習時のみならず、運用コストも膨大です。普通のITサービスは、一旦サービスが完成してしまえば、ユーザーが増えることによるコスト増加は大したことがないのですが、最先端の生成AIは単なる個別ユーザーの「ありがとうございます」「どういたしまして」というチャットですら、膨大な電力コストがかかる金食い虫です。3ドル払って1ドル稼ぐと揶揄されているように、基本的にはユーザーが増えれば増えるほど赤字です。「先端生成AIを開発し、純粋に生成AIを使ったプロダクトから利益を挙げ続ける」というのは、現状まず不可能です。仮に最先端のAIを提供している間に獲得したユーザーが固定ユーザーになってくれれば先行者有利の構図となり、その開発・運営コストも報われるのですが、現状の生成AIサービスを選ぶ基準は純粋に性能であるため、他の機関が性能で上回った瞬間に大きなユーザー流出が起きます。現状の生成AIサービスはSNSのように先行者のネットワーク効果が働かないため、常に膨大なコストをかけて性能向上レースをしなければユーザー維持ができません。しかも後発勢は、先行者が敷いた研究のレールに乗っかって低コストで追いつくことができます。
生成AI開発競争では以上の、
・スケーリング則などの存在により、基本的には札束戦争
・生成AIサービスは現状お金にならない
・生成AI開発の先行者有利は原則存在しない
と言う大前提を理解しておくと、読み解きやすいかと思います。
(繰り返しですがこれは一般向けの説明で、実際に現場で開発している開発者は、このような文章では表現できないほどの努力をしています。)
OpenAIが生成AI開発において(先週まで)リードを保っていた源泉となる強みは、とにかく以下に集約されると思います。
・スケーリングの重要性に最初に気付き、自己回帰型LLMという単なる「言語の穴埋め問題がとても上手なニューラルネットワーク」(GPTのこと)に兆レベルの予算と、数年という(AI界隈の基準では)気が遠くなるような時間を全ベットするという狂気を先行してやり、ノウハウ、人材の貯金があった
・極めてストーリー作りや世論形成がうまく、「もうすぐ人のすべての知的活動ができるAGIが実現する。それを実現する技術を持っているのはOpenAIのみである」という雰囲気作りをして投資を呼び込んだ
前者については、スケーリングと生成AIという、リソース投下が正義であるという同じ技術土俵で戦うことになる以上、後発でも同レベルかそれ以上の予算をかけられる機関が他にいれば、基本的には時間経過とともにOpenAIと他の機関の差は縮みます。後者については、OpenAIがリードしている分には正当化されますが、一度別の組織に捲られると、特に投資家層に対するストーリーの維持が難しくなります。
一方のGoogleの強みは以下だと思います。
・投資マネーに頼る必要なく、生成AI開発と応用アプリケーションの赤字があったとしても、別事業のキャッシュで相殺して半永久的に自走できる
・生成AIのインフラ(TPU、クラウド事業)からAI開発、AIを応用するアプリケーション、大量のユーザーまですべてのアセットがすでに揃っており、各段階から取れるデータを生かして生成AIの性能向上ができる他、生成AIという成果物から搾り取れる利益を最大化できる
これらの強みは、生成AIのブーム以前から、AIとは関係なく存在する構造的なものであり、単に時間経過だけでは縮まらないものです。序盤はノウハウ不足でOpenAIに遅れをとることはあっても、これは単に経験の蓄積の大小なので、Googleの一流開発者であれば、あとは時間の問題かと思います。
(Googleの強みは他にももっとあるのですが、流石に長くなりすぎるので省略)
まとめると、
生成AIの性能は、基本的にスケーリング則を背景にAI学習のリソース投下の量に依存するが、これは両者であまり差がつかない。OpenAIは先行者ではあったが、AI開発競争の性質上、先行者利益はほとんどない。OpenAIの強みは時間経過とともに薄れるものである一方、Googleの強みは時間経過で解消されないものである。OpenAIは自走できず、かつストーリーを維持しない限り、投資マネーを呼び込めないが、一度捲られるとそれは難しい。一方、GoogleはAIとは別事業のキャッシュで自走でき、OpenAIに一時的に負けても、長期戦でも問題がない。ということになります。
では、OpenAIの勝利条件があるとすれば、それは以下のようなものになると思います。
・OpenAIが本当に先行してAGI開発に成功してしまう。このAGIにより、研究開発や肉体労働も含むすべての人間の活動を、人間を上回る生産性で代替できるようになる。このAGIであらゆる労働を行なって収益をあげ、かつそれ以降のAIの開発もAGIが担うことにより、AIがAIを開発するループに入り、他の研究機関が原理的に追いつけなくなる(OpenAIに関する基本的なストーリーはこれ)
・AGIとまではいかなくとも人間の研究力を上回るAIを開発して、研究開発の進捗が著しく他の機関を上回るようになる
・ネットワーク効果があり先行者有利の生成AIサービスを作り、そこから得られる収益から自走してAGI開発まで持っていく
・奇跡的な生成AIの省リソース化に成功し、現在の生成AIサービスからも収益が得られるようになる
・生成AI・スケーリング則、あるいは深層学習とは別パラダイムのAI技術レースに持ち込み技術を独占する(これは現在のAI研究の前提が崩れ去るので、OpenAI vs Googleどころの話ではない)
・Anthropicのように特定領域特化AIを作り、利用料金の高さを正当化できる価値を提供する
最近のOpenAIのSora SNSや、検索AI、ブラウザ開発などに、この辺の勝利条件を意識したものは表れているのですが、今のところ成功はしていないのではないかと思います。省リソース化に関しては、多分頑張ってはいてたまに性能ナーフがあるのはこれの一環かもしれないです。とはいえ、原則性能の高さレースをやっている時にこれをやるのはちょっと無理。最後のやつは、これをやった瞬間にAGIを作れる唯一のヒーローOpenAIの物語が崩れるのでできないと思います。
最後に今回のGemini3.0やNano Banana Pro(実際には二つは独立のモデルではなく、Nano Bananaの方はGemini3.0の画像出力機能のようですが)に関して研究上重要だったことは、事前学習のスケーリングがまだ有効であることが明らかになったことだと思います。
ここまでひたすらスケーリングを強調してきてアレですが、実際には2024年後半ごろから、データの枯渇によるスケーリングの停滞が指摘されていること、また今年前半に出たスケーリングの集大成で最大規模のモデルと思われるGPT-4.5が失敗したことで、単純なスケーリングは成り立たなくなったとされていました。その一方で、
去年9月に登場したOpenAIのo1やDeepSeekによって、学習が終わった後の推論時スケーリング(生成AIが考える時間を長くする、AIの思考過程を長く出力する)が主流となっていたのが最近です。
OpenAIはそれでもGPT-5開発中に事前学習スケーリングを頑張ろうとしたらしいのですが、結局どれだけリソースを投下しても性能が伸びないラインがあり、諦めたという報告があります。今回のGemini3.0に関しては、関係者の発言を見る限り、この事前学習のスケーリングがまだ有効であり、OpenAIが直面したスケーリングの限界を突破する方法を発見していることを示唆しています。
これはもしかしたら、単なるお金をかけたスケーリングを超えて、Googleの技術上の「秘伝のタレ」になる可能性もあり、上記で書いた以上の強みを今回Googleが手にした可能性もあると考えています。
本当はもっと技術的に細かいことも書きたいのですが、基本的な考えは以上となります。色々と書いたものの、基本的には両者が競争してもらうことが一番技術発展につながるとは思います! November 11, 2025
2RP
🚨 【重要】YouTubeクリエイターさんへ
少し前から話題になってた例の件…
コミュニティガイドラインの執行が超強化された🫡と公式のお知らせが👀!
✍️規制の対象となるコンテンツ
❶オンラインギャンブル
❷カジノ風ゲーム(ソーシャルカジノ)
❸ゲーム内の過激な暴力
▼詳しくは【さらに表示】
それぞれの詳細を公式より抜粋して記載。
❶オンラインギャンブル
Google未認定のギャンブルサイトへの誘導を禁止してきたが、これを拡大。
デジタルグッズ(ゲームスキン、NFTなど)を含む、金銭的価値のあるアイテムを用いたオンラインギャンブルも取り締まりの対象に。
❷カジノ風ゲーム(ソーシャルカジノ)
現実の金銭を賭けないカジノ風ゲーム(ソーシャルカジノ)に関する方針を更新。
ソーシャルカジノサイトを描写、宣伝、または助長するコンテンツも、年齢制限の対象に。
❸ゲーム内の過激な暴力
これまでのガイドラインに加え、リアルな人間キャラクターが登場し「拷問」や「非戦闘員に対する集団的暴力」のシーンに焦点を当てた動画は新たに年齢制限の対象に。審査の際に、暴力シーンの「持続時間」(切り抜き集の場合は累計時間も考慮)、「焦点の当たり方」(ズームインなど)、キャラクターが「リアルな人間」であるかどうか、などが考慮される。 November 11, 2025
2RP
ふゆぅ…レナちゃん
今はandroidでも設定から
Googleサービスの「Quick Share」の項目を
アップデート更新すればandroidでもAirDropが使えるようになったんだよ。
そんなことも知らないんだね… https://t.co/P2Zi4wSLbi November 11, 2025
1RP
こういうのサッと作って提供できるのすごい。Googleフォーム使って、埋め込みで表示する、でもその手段とスピードと誰もが見れて情報を入力できる災害時のサイトとしてすごい。
どうか1人でも無事でありますように。 https://t.co/ME6KqWCiXm https://t.co/CwgkmdJrhT November 11, 2025
1RP
Google がパスワードという仕組みはすでに「時代遅れ」と言い切るのは、使い勝手が悪いからではなく、根本の構造が限界を迎えたから。
人間に複雑な記号列を覚えさせ、それを入力させ、そのたびに盗まれたり漏えいしたりする前提のままでは、世界中のサービスが抱えるセキュリティとUXの問題は永遠に解決しない。そこで登場したのがパスキーで、これは秘密鍵をデバイス側で保持し、公開鍵の署名で本人性を証明するという仕組みによって、認証そのものの土台を作り替える。
この変化は、ログインという単一の機能にとどまらない。アカウント作成、サインイン、決済の承認、設定の変更、権限の付与。あらゆる「本人であることの確認」が、すべて同じ“署名”という共通の動作に一本化される。つまり、従来は場面ごとに異なる「パスワード入力」「SMS 認証」「2段階認証」「支払いパスコード」「メールリンク認証」がバラバラに要求されていたものが、すべてパスキーひとつに統合される。人間が覚える呪文は消え、デバイスが保持する鍵束がすべてを代行する時代へ移る。
その世界では、「この操作は大事だからパスワードをもう一度入力してください」という古くさいフローは姿を消す。代わりに、どんな操作でも「あなたのデバイスが鍵を持っていますか」「署名して良いですか」という確認だけで完了する。ログインも決済も同じ型で動くから、セキュリティの一貫性が高まり、ユーザー体験も不要に複雑化しない。Google が強調するのは、この移行を成功させるにはパスキーの“管理UI”が不可欠だという点。どのデバイスがどの鍵を持っているのか、いつ作られたのか、どれを削除していいのか──これを明確に見せることで、ユーザーは“鍵束を自分でコントロールしている”という安心感を得られる。
Google の「Passwords are out」という言葉は、インターネットの本人確認という仕組みそのものに対する世代交代の発表。人間が記憶に頼る認証はもはや時代に合わず、デバイスが鍵を持つ署名方式が標準になる。ログイン、決済、設定変更、すべてが同じ一本の仕組みで動く世界。それが今、現実のものとして進行している。 November 11, 2025
1RP
どに&べべと原ちゃんの聖地へ🫶🏻
ファイヤー炒飯たべたよ🔥
帰りに近くにいたタムちゃん達みてから将生のインスト見てノリで深夜にGoogle巡り🏃➡️あー楽しかったよお🫶🏻オタク達かわいすぎ最高🥳💕 https://t.co/SVy0z4Z0zY November 11, 2025
1RP
最近数学圈发生了一件很有意思的事。
世界顶级数学家陶哲轩在解决一个 Erdős(埃尔德什)的经典问题时,全流程都在用 AI 做助手——从证明草案,到简化证明,再到形式化验证。
Erdős 是20世纪最高产的数学家之一,一辈子发表了1500多篇论文,提出了无数开放问题。数学圈有个著名的"埃尔德什数"——如果你和他合作过论文,你的埃尔德什数就是1;和他的合作者合作过,就是2,以此类推。爱因斯坦的埃尔德什数是2。
后来有人专门做了一个网站,把他的很多未解决/已解决问题系统整理出来,这就是 Erdos Problems 网站。
陶哲轩讲的是其中的第 367 号问题,属于数论里的一个具体问题,专业数学研究级别的问题。
解决过程大概是这样的:
一位数学家 Wouter van Doorn 先给出一个人类手写的反例证明草案,但里面有一个关键恒等式他没完全证明,只是说:“相信有人能帮我确认一下”。
陶哲轩把这个恒等式扔给 Google 的 Gemini Deepthink 模式。大概十分钟后,Gemini 给出了一份完整证明,还顺带确认了整套论证是成立的。
Gemini 的证明用到了 p-adic 等比较高级的代数数论工具,对这个具体问题来说有点杀鸡用牛刀。于是陶哲轩花了半小时,把 AI 的证明手工转化成更基础、更易懂的版本。
两天后,另一位数学家 Boris Alexeev 用一个叫 Aristotle 的工具(基于 AI + Lean)完成了全套形式化证明,还特意手动检查最终结论,以防 AI 在形式化过程中存在编造。
陶哲轩觉得还没完,又用 Deep Research (同时用了 ChatGPT 和 Gemini)做了一轮文献搜索,看这个问题有没有前人类似工作。结果找到了若干关于连续幂数的相关论文,但没有直接解决第 367 号问题。
整个流程:人类提出猜想 → AI暴力证明 → 人类简化优化 → AI辅助形式化验证。
都在说 Gemini 3 已经到了博士生水平,看来所言非虚,这些事情真的需要数学博士级别才能做的出来,但另一方面,真正的数学家也并没有被 AI 代替:是人类决定哪个问题值得解决,是人类判断AI的p-adic方法太重了需要简化,是人类手工完成最终的形式化表述以验证 AI 的结果是否准确。
AI 做的是那些需要大量计算、符号推演、但方向已经明确的体力活。在 AI 时代,问对问题、甄别结果,比以前更重要了。 November 11, 2025
1RP
「Auld Lang Syne」(蛍の光の原曲)が
コンテンツIDにひっかるのどうかしてるぜw!
ということで異議申し立てしてきたけど
申し立ての内容を考えるときGoogleのAIモードが役に立った!こういう事務的な文章を考えさせる時はすごい楽だね🐸 https://t.co/p7sNVLcQW2 November 11, 2025
最近のGoogleのクチコミは
外国人ばかりであてにならん。
チャージ料金600円取られた。星1
倭国では居酒屋でチャージあるのは当たり前だし
時差ボケで朝起きられないのに
ホテルのチェックアウト時間が早すぎる。星1
時差ボケ野郎共だけの為に金額下げられるかよ
倭国人もホテル泊まる人はいる November 11, 2025
@AVACLUB_OTO ジオゲッサーはグーグルストリートビューを使って、世界のどっかで始まって地図で始点を当たてみるゲーム。近さによって点数ゲットするけどパーフェクトスコアは5000ポイント。これ8倍速なんだけどこんな感じ↓
https://t.co/WO5eRqJBjI November 11, 2025
思考モードが上限に行くまで今までGeminiと壁打ちしてましたが、Googleだけあって、SEOやYouTubeとの親和性が凄いな。画像生成も素晴らし過ぎて、一発で色々出るね。ただどうしても倭国語が弱いから、画像に上手く文字が入るのはまだ先かな。 https://t.co/xUUi2gRLlL November 11, 2025
演者として活躍していただけるメンバーを募集中!
未経験者大歓迎!
応募条件は画像を参照
応募はGoogleフォームにてご回答願います
※募集期限:2025年12月15日
https://t.co/V9OPiLLKyu
皆様のご応募お待ちしております!
#ゲーム実況メンバー募集 #ゲーム実況者グループ募集 https://t.co/hnBymNjjD7 November 11, 2025
ちょっとした調べものにはChromeのAIモードがいいです。
Claudeの拡張機能も面白いし将来性も感じるけどシンプルにChrome AIモードは便利。
いろんないいサービスが溢れてるけど、今の流れだと事務仕事まわりはGoogleが総ざらいにしそうな気配がある。 November 11, 2025
<ポストの表示について>
本サイトではXの利用規約に沿ってポストを表示させていただいております。ポストの非表示を希望される方はこちらのお問い合わせフォームまでご連絡下さい。こちらのデータはAPIでも販売しております。









