Google トレンド
0post
2025.11.27 15:00
:0% :0% (30代/男性)
人気のポスト ※表示されているRP数は特定時点のものです
#平野紫耀 担用Googleスケジュール🗓️に、Stationhead【UNLIMITED 2025 END OF YEAR】追加更新完了しました
予定をタップすると詳細が見れてリンクにとべるようになっていますので良かったらご利用ください
🗓️🔗 https://t.co/5kVblqM887
#ShoHirano #Number_i https://t.co/pqDnjEwVgB November 11, 2025
37RP
NVIDIAの最大のライバルはAMDでもGoogleでもない。「物理学」だ。市場が次世代GPUの性能に熱狂している裏で、データセンターの現場では静かな、しかし致命的な「物理的敗北」が確定しつつあることを、どれだけの人が理解しているだろうか。
ぼくらが直面しているのは、単なるチップの進化ではない。熱力学という宇宙のルールが突きつける「120kWの壁」という絶対的な限界点だ。
「空冷」の時代は終わった。
これは比喩ではない。物理的に、空気という媒体ではもはやAIを支えきれないのだ。最新のBlackwell世代、特にGB200 NVL72が突きつけた現実はあまりに残酷だ。1ラックあたり120kW。この熱密度は、従来のハイパースケールデータセンターの4倍から6倍に達する。
これを「風」で冷やすことが、いかに狂気じみているか想像してほしい。
空冷で120kWを制御しようとすれば、データセンターはもはや計算する場所ではなく、巨大な暴風実験室と化す。ここで発生するのは2つの絶望的な現象だ。
一つは「寄生負荷(Parasitic Load)」の暴走。
空気は熱を運ぶ効率があまりに悪い。そのため、熱を排出するためだけにファンを限界まで高速回転させる必要がある。その結果、供給される電力の20%から30%が、計算ではなく「ファンを回すためだけ」に消えていく。AIを動かしているのか、巨大な扇風機を動かしているのか、もはや区別がつかない本末転倒な事態だ。
もう一つは、より深刻な「音響による破壊」だ。
120kWを空冷するためのファンノイズは、ジェットエンジンの至近距離に匹敵する音圧を生む。この凄まじい「音の振動」は、サーバー内のHDDの読み書き性能を物理的に低下させ、さらには精密な基板のはんだ接合部さえも破壊するリスクがある。
つまり、空冷を維持しようとすれば、AIはその「叫び声」で自らの身体を壊してしまうのだ。
だからこそ、産業全体が「水」へと舵を切る。これは選択肢の一つではなく、唯一の生存ルートである。
液体は空気の約4,200倍の熱容量を持つ。水冷(液冷)への移行は、単なる冷却方式の変更ではない。人類がシリコンバレーで築き上げてきたインフラの「血管」を、すべて引き抜いて交換するレベルの「総取り替え工事」を意味する。
NVIDIAという「脳」が進化すればするほど、その脳を冷やすための「心臓(ポンプ)」と「血管(配管・CDU)」、そして「冷媒」を支配する企業の価値は、指数関数的かつ不可逆的に高まっていく。
「AIバブル」などという言葉で思考停止する前に、足元を見てほしい。そのサーバーラックは、熱力学の審判に耐えられる設計になっているか?
物理法則は、株価のように反発してはくれない。限界を超えれば、ただ静かに、システムを焼き尽くすだけである。 November 11, 2025
36RP
🚨 【重要】YouTubeクリエイターさんへ
少し前から話題になってた例の件…
コミュニティガイドラインの執行が超強化された🫡と公式のお知らせが👀!
✍️規制の対象となるコンテンツ
❶オンラインギャンブル
❷カジノ風ゲーム(ソーシャルカジノ)
❸ゲーム内の過激な暴力
▼詳しくは【さらに表示】
それぞれの詳細を公式より抜粋して記載。
❶オンラインギャンブル
Google未認定のギャンブルサイトへの誘導を禁止してきたが、これを拡大。
デジタルグッズ(ゲームスキン、NFTなど)を含む、金銭的価値のあるアイテムを用いたオンラインギャンブルも取り締まりの対象に。
❷カジノ風ゲーム(ソーシャルカジノ)
現実の金銭を賭けないカジノ風ゲーム(ソーシャルカジノ)に関する方針を更新。
ソーシャルカジノサイトを描写、宣伝、または助長するコンテンツも、年齢制限の対象に。
❸ゲーム内の過激な暴力
これまでのガイドラインに加え、リアルな人間キャラクターが登場し「拷問」や「非戦闘員に対する集団的暴力」のシーンに焦点を当てた動画は新たに年齢制限の対象に。審査の際に、暴力シーンの「持続時間」(切り抜き集の場合は累計時間も考慮)、「焦点の当たり方」(ズームインなど)、キャラクターが「リアルな人間」であるかどうか、などが考慮される。 November 11, 2025
9RP
アメリカ株今度はベストの方
2位はGoogleさん
最近は生成AIの覇権争いで度々話題になってるけど
それで勝つのか負けるのかで将来の株価も大きく変わりそう。 https://t.co/P98zjjS1qg https://t.co/alkVcogwSu November 11, 2025
7RP
ふゆぅ…レナちゃん
今はandroidでも設定から
Googleサービスの「Quick Share」の項目を
アップデート更新すればandroidでもAirDropが使えるようになったんだよ。
そんなことも知らないんだね… https://t.co/P2Zi4wSLbi November 11, 2025
6RP
2025年,我的几个第一性原理:
1. LLM token一定会越来越便宜,模型越来越强大,记住,所有做LLM Agent的人,都必须思考如何用10~1000倍的token带来革命,而不是他妈跟个傻逼似的天天想着省token;
2. chatbot的形式一定会被消灭,no chatbot revolution才是正确方向,一切AI应用不可能 、不应该、绝对不是一个个大号聊天机器人,一个个大对话框等着人大段大段往里敲字,
记住,所有AI产品必须重新设计,一切chatbot AI应用必定会被改写成NO CHATBOT形式,无一例外,chatbot的产品形态必然会彻彻底底、完完全全地淘汰,
或者那个傻逼一样的对话框,至少作为二等公民出现;
3. AI助手一定不能用“按个按钮”、“截个图”、“上传个文件”,再写个长长的prompt的形式出现,让用户解决个问题,先让用户点点按按十几次,
AI助手一定是具有强侵入性的,一定能主动嗅探一切环境,吞掉一切数据和信息,一定会主动在后台观察一切操作和行为——并且在疑似需要帮助的时候,主动弹出个对话框,用户一键确认后,主动接管,主动解决一切问题,
而绝不应该像准备个考试一样,准备文件、准备截图、准备一大堆按钮、准备一大长串prompt,让用户跟个大傻逼似的,手忙脚乱地在那儿表演,
总而言之,无论是商业落地的AI Agent,还是各种办公软件、工具、生活类的AI Agent,一个个不仅是傻逼兮兮的大黑框chatbot,而且要用户手动输入一大堆文件、图表、链接、信息,再敲一大段prompt——这些全都走了大弯路,
toC的无缝衔接强入侵的主动AI Agent助手,完完全全不会给你任何告诉他的机会,而是让AI Agent主动判断你是否需要我,直接给你一个大大的对话框,简单描述一下“我计划怎么帮助你”——你点一下确定,它来解决后面所有的事情。
4. 一切能用coding解决的问题,都是SWE Agent能解决的问题,也就是说,都可以直接拿claude code这类工具套壳来用,
SWE Agent这个形态,最擅长解决的问题,就是在一个确定的环境(一台机器、几台机器、若干仿真环境、一套terminal里的编译器/脚手架/运行环境/包管理、profiling和debugging方法)解决的问题,
而用coding解决的问题,从来都不止coding,一切VHDL/Verilog等电路设计、电路simulation和validation、一切类似labview和matlab simulink中可以仿真的电机、信号、示波器等等模块,
甚至ansys和CAD这类工具,还有大量data science和计算的问题,以及用lean或者formal-proof解决一些proof-based的数学和模型问题,都可以转化成一些API和coding解决的问题,然后让SWE Agent来解决,
这类问题可以叫做“一台机器上的确定环境下的问题”,
这类问题的特点是,可以靠LLM的智能不断拆分成一大堆subtasks,然后在本地环境下反复尝试、反复试错、反复看output、反复试验结果,失败后再换一个新的approach;
5. full self coding(https://t.co/W0qe8YtsYX)就是基于上面所有第一性原理的一个试验。
我将会设计一套侵入式试验,让10~500个ai agent组成一组,给一个github项目找出所有潜在的问题,包括文档、测试、修bug、优化、重构、完成todo list、加功能、加API等等,让10~100个agent并行完成这个repo潜在需要完成的所有任务,
并且让至少10组这样的agent去github上面公开贡献,等于在没有任何人为输入prompt的前提下,造出来1000~5000个agent在开源世界源源不断地做出贡献,就死死赖在github上面,尝试修复一切可能修复的潜在问题,做出贡献。
请你记住full self coding是最坚决贯彻test-time scaling law的行为,
full self coding坚决相信,人是ai agent世界最傻逼、最慢、错误最多、判断失误最高的存在,让程序员手敲prompt,无异于给AI Agent拖后腿,
只有先分析出问题,然后让10~500个agent同时并行运行,才能最大化执行的效率,最快速度解决已经发现的问题,无休止地为github提供潜在的有价值贡献——并且最关键的是,把“敲prompt的程序员”这个最垃圾、最慢、出错最多的环节彻底消除;
6. full self coding最大的瓶颈,一个是token价格过高,一个是目前几乎所有主流供应商,LLM inference速度过慢,
所以我最后的一个想告诉大家的价值观是:
groq、sambanova、cerebras这种在片上堆满几个GB的SRAM,在inference上效率是nvidia、amd、google TPU这些落后架构的10~50倍,这是test-time scaling law的最后一环,
如果人类在claude code、gemini cli上全面接入groq、sambanova、cerebras上host的模型,所有速度都会再快10~50倍,
现在最大的问题是,groq、sambanova、cerebras他们只能白嫖开源模型(deepseek、qwen、zai甚至更难用的llama),因为这三家自己没能力训练模型,本质是卖芯片的(实际是自己造完data center后卖API),
但是只要中国几家厂商能源源不断输送最好的开放weights的模型,让groq、sambanova、cerebras持续用上他们能用的最好的开放weights的模型,这三家最终会把nvidia、google tpu连同他们的客户一锅端。
人类依然非常需要LLM inference的时间上的飞速优化,只不过现在人们需要更强的模型,而人类愿意为此多等等时间,
但是终归有一天人们会发现,无论是coding,还是在各种infra中快速反馈相应,哪怕是简单的搜索或者问答,inference速度这件事才是至关重要。 November 11, 2025
5RP
Googleは、Nvidiaを速度で倒すのではなく、計算コストを安くすることでAIで勝とうとしている。
NvidiaはGPUをクラウドに売る時に70%以上の高いマージンを乗せ、それがクラウド価格を押し上げる。
一方Googleは、TPUをほぼ製造原価で自社用に作り、販売マージンなしでAggressiveなクラウド価格を出せる。
これはチップ → ネットワーク → クラウドの垂直統合により、スタック全体を押さえているから。
トレーニングは最速チップが重要だが、運用段階では推論がコストの大半を占める。
もし推論がAIコストの90%になるなら、勝者は大規模に最も安いトークン単価を提供できる企業になる。
GoogleはTPUでトークン単価を下げ続け、それをクラウド価格に反映させる。
そうなると、買い手は速度より価格・安定性・供給量を重視する可能性が高い。
Nvidiaは最先端のトレーニングでは強いが、推論が安価なTPUに移れば高いマージンは縮むかもしれない。
さらにGoogleは、Search/YouTube/Android/Workspace でTPUのキャパを常に埋められる巨大ディストリビューションの強みがある。
(ChatGPT和訳) November 11, 2025
5RP
推友强烈推荐的GiffGaff手机卡,它来了!
🔥 10英镑用20年的英国手机号,你敢信?
注册ChatGPT、Google、TikTok总是卡在手机验证?
某宝虚拟号接码不稳定,国内手机号隐私泄露担心?
月租卡保号成本太高,停机后号码就废了?
👉 如果以上任何一个痛点戳中了你,这篇文章能帮你省下90%的烦恼。
今天要聊的,是一张神奇的英国手机卡——GiffGaff。
10英镑充值一次,理论使用20年+,这可能是全网成本最低的海外保号方案。
💡 为什么选GiffGaff?6大理由让你无法拒绝
✅ 真0月租 — 充10英镑,每半年发1条短信(0.3英镑)保号,一年成本不到6块钱
✅ 欧洲号码硬通货 — +44英国区号,ChatGPT/Google/Telegram/海外银行全认
✅ 完全匿名 — 无需护照、无需人脸、无需实名(你懂的)
✅ 新人直接送5英镑 — 通过邀请链接注册,充10到账15
✅ 可转eSIM — 虽然是实体卡,但可转虚拟卡(后续出教程)
✅ 验证码秒到 — 实测Google/TikTok/ChatGPT接码速度飞快
📦 怎么搞到这张卡?3种方案对比
方案1:官网免费申请(佛系玩家专属)
🔗 申请地址:https://t.co/GTBVfzTki4
·优点:完全免费,包邮到国内,可申请多张
·缺点:
⚠️ 平邮无法追踪,能否过海关全凭运气
⚠️ 等待周期半个月到2个月不等
⚠️ 收不到就是收不到了,无售后
适合人群:不急用,愿意碰运气的玩家
方案2:转运地址(直接放弃)
·通过英国转运公司收货后转运到国内。
·结论:转运费 > 卡价值,完全不划算,不推荐。
方案3:找代理购买(推荐⭐⭐⭐⭐⭐)
优点:确定收货,3-7天到手,省心省力
价格参考:
·淘宝/闲鱼:30-60元/张
·私人代理:价格略高但服务更好
注意事项:
·选成交量>500、评分>4.8的卖家
·确认是否包激活服务
·询问能否支持邀请奖励(5英镑)
💡 小技巧:即使代购,也可以先用邀请链接填写邮箱,后续用该邮箱激活代购的卡,理论上能拿到5英镑奖励(未验证,可试试)
🛠️ 激活教程(保姆级,一步不落)
第1步:进入激活页面
访问官网:https://t.co/P14M4x4PtZ
下滑找到 "Activate your SIM"
第2步:输入激活码
📍 激活码在卡片背面,别和19位SIM卡号搞混
第3步:填写邮箱
💡 推荐:Gmail / Outlook / Proton
❌ 不推荐:QQ邮箱 / 163邮箱(可能收不到邮件)
第4步:创建密码
要求:至少8位,包含大小写字母+数字,建议用密码管理器生成
第5步:跳过营销选项
是否接收优惠活动?选 "No",出生年份随便填或不填
第6步:选择套餐(关键!)
⚠️ 重点:页面会推荐各种月租套餐,全部忽略
正确操作:
·下滑到页面底部
·找到 "Pay as you go"(按需付费)
·点击进入
第7步:充值(最低10英镑)
💳支付方式:Visa / Mastercard(不支持支付宝/微信)
💡 没有信用卡?
·申请虚拟信用卡(Dupay / Nobepay等)
·找代理代充(需手续费)
📝 填写信息:姓名/地址随便填,不需要真实
第8步:完成支付
✅ 支付成功后:
·账户余额:15英镑(10英镑充值+5英镑奖励)
·获得手机号:个人资料中查看(+44开头)
⏱️ 等待时间:约2小时后可插卡使用
📱 插卡测试(实战效果)
信号测试
·插卡立刻显示信号
·国内显示 "中国联通" 或 "中国移动"(漫游)
·正常接收短信
验证码接收测试
✅ Google注册:秒收✅ TikTok注册:秒收✅ ChatGPT注册:正常✅ Telegram注册:正常✅ 海外银行短信:支持(Wise、Revolut等)
🔄 保号攻略(每半年操作一次)
GiffGaff保号规则:每180天余额需有变动
最省钱方案:发短信保号
·💰 成本:0.3英镑/条
·📅 频率:每半年发1条
🧮 年成本:0.6英镑(约¥5.5)
·📊 可用年限:15英镑÷0.6=25年
操作步骤:
1.打开手机短信
2.发送任意内容到任意英国号码(如+447000000000)
3.扣费0.3英镑→保号成功
💡 小技巧:设置手机日历提醒,每6个月提醒一次
🎯 一句话总结
10英镑用20年+完全匿名+欧洲号码认可度高+可转eSIM
如果你需要一个长期稳定的欧洲手机号,GiffGaff可能是目前综合成本最低的方案。
推友都在推荐😏
有需要的朋友,冲就完了。 November 11, 2025
5RP
📒12年で400倍のリターンを生んだ私の投資4原則 —— NVIDIAの独占は終わるのか?その問いが的外れな理由 $NVDA
2025年11月、投資家コミュニティで最も熱い議論を呼んでいるのは、AIモデルの覇権争いではない。
「NVIDIAの独占は終わるのか」
これだ。
11月24日、The InformationがMetaとGoogleの交渉を報じた。MetaがGoogleのTPU(Tensor Processing Unit)を数十億ドル規模で利用することを検討しているという。これまでNVIDIA一辺倒だったMetaが、代替を真剣に模索している。
同じ週、Amazonは自社開発チップ「Trainium3」の年内プレビューを発表した(量産は2026年初の見込み)。Microsoftも独自チップ「Maia」の開発を進めている。Googleは第7世代TPU「Ironwood」の一般提供を数週間以内に開始すると発表し、Anthropicは10月にTPU利用の大規模拡張を発表、最大100万基のTPUでClaudeを運用する計画を明らかにした。
「NVIDIA終焉」の声が、かつてないほど大きくなっている。
私は20年以上、テクノロジー株に投資してきた。2013年から保有し続けている NVIDIA $NVDA は400倍以上のリターンをもたらした。当然、この問いは私にとっても切実だ。
しかし、結論から言おう。
「NVIDIAの独占は終わるのか」という問いは、投資判断において的外れだ。
なぜか。この記事では、その理由を段階的に論証する。そして、投資家が本当に問うべきことは何か、私のこれまでの投資経験に基づいてその考え方を共有したい。
なぜ今「NVIDIA終焉論」が盛り上がっているのか
まず、終焉論者の主張を公平に整理しよう。彼らの議論には、無視できない根拠がある。
第一に、ハイパースケーラーの「脱NVIDIA」の動きだ。
Google、Amazon、Microsoft、Metaという4大テック企業のすべてが、独自AIチップの開発に巨額投資を行っている。GoogleのTPUは10年以上の歴史を持ち、第7世代Ironwoodは1チップあたり4,614テラFLOPS(FP8)という性能に達した。AmazonのTrainiumは第3世代に進化し、コスト競争力でNVIDIAを脅かしている。
これらの企業がNVIDIAへの依存度を下げようとする動機は明確だ。NVIDIAの粗利益率は70%を超える。大口顧客から見れば、NVIDIAに支払う金額の大半が「利益」としてNVIDIAに吸い取られている。自社でチップを開発すれば、この利益を自社に取り込める。
第二に、AIモデル競争の激化がインフラ多様化を加速させている。
2025年11月の2週間で、AIモデルの王座は4度入れ替わった。11月12日にOpenAIが GPT-5.1 をリリース。5日後の11月17日にxAIの Grok 4.1 が主要LLMベンチマークで王座を奪取。翌18日にGoogleの Gemini 3 がLMArena Elo ベンチで 1501という史上初の1500超えを記録。そして24日、Anthropicの Claude Opus 4.5 がSWE-bench Verifiedで初の約80%台を記録しトップに立った。
この激しい競争の中で、各社はインフラの多様化を進めている。OpenAIは10月28日にMicrosoftとの再契約でクラウド独占性を緩和し、11月3日にAWSと7年間B(380億ドル)の大型契約を締結した。
第三に、Google TPUの外部提供の拡大だ。
従来、TPUはGoogle社内での利用が中心だった。しかし、2024年12月に第6世代Trilliumが一般顧客向けに提供開始され、第7世代Ironwoodも2025年内の一般提供が予定されている。Anthropicは2023年からTPUを使用してきたが、2025年10月に最大100万基への大規模拡張を発表した。そして、MetaがTPUを数十億ドル規模で利用することを検討している。
これらの事実を見れば、「NVIDIAの独占は崩れつつある」という主張には一定の説得力がある。
しかし、この議論には決定的な見落としがある。
終焉論者が見落としている「不都合な数字」
2025年11月20日、NVIDIAは2026会計年度第3四半期の決算を発表した。
売上高は.0B(570億ドル)。前年同期比+62%、前四半期比+22%。データセンター部門の売上は.2Bで、全体の90%を占めた。第4四半期のガイダンスはB。アナリスト予想を上回る数字だった。
決算説明会で、CFOは「2026年末までに0B(5,000億ドル)の需要可視性がある」と明言した。供給は「週1,000ラック」のペースでなお逼迫している。Blackwell世代の需要について、Jensen Huangは「想像を絶する」と表現した。
「TPUの脅威」「カスタムシリコンの台頭」が叫ばれる中で、この成長率だ。
しかし、私が最も注目したのは売上高ではない。
決算説明会でJensen Huang CEOが言及した「5000億ドルの可視性(visibility)」だ。これは、2026年末までにNVIDIAが確実に認識できる需要の総額を意味する。受注残高ではなく、顧客との対話から見える需要の全体像だ。
5000億ドル。これは、NVIDIAの年間売上高の2年分以上に相当する。これは現在も供給が需要に追いついていない状況が続いているということだ。
ここで、終焉論者の主張と現実の数字を対比してみよう。
終焉論者は言う。「ハイパースケーラーは脱NVIDIAを進めている」と。
確かに、GoogleはTPUを開発し、AmazonはTrainiumを開発し、MicrosoftはMaiaを開発している。しかし、これらの企業は同時に、NVIDIAからも大量のGPUを購入し続けている。
なぜか。需要がすべてのチップメーカーの供給能力を超えているからだ。
OpenAIが発表した2025年から2035年のインフラ投資計画を見てほしい。Broadcomに3500億ドル、Oracleに3000億ドル、Microsoftに2500億ドル、NVIDIAに1000億ドル、AMDに900億ドル、AWSに380億ドル。合計1兆ドル超。
これは「NVIDIA離れ」の計画ではない。全方位への投資拡大だ。NVIDIAへの投資額1000億ドルは、現在のNVIDIAの年間売上高の約半分に相当する。
終焉論者が見落としているのは、単純な事実だ。
「NVIDIAの独占が崩れる」と「NVIDIAの売上が減る」は、全く別の話だ。
市場シェアが100%から80%に下がっても、市場規模が3倍になれば、売上は2.4倍に増える。
これが今、AIチップ市場で起きていることだ。
Google TPUの実力を冷静に評価する
終焉論を否定するだけでは不十分だろう。
TPUの実力を正確に理解することが、投資判断には不可欠となる。
続きはこちら!:
https://t.co/ByZGJ5MzfW November 11, 2025
3RP
昨日のこちらのポストを見て、「いよいよMicrosoftの反撃が始まったな、これでエンプラ領域での(Geminiさんアシストによる)Googleの快進撃もすぐに止まるに違いない」と即断定するのはまだ早いと思います。長くなりそうですが、どういうことか少々詳しく説明しますね。
まず、私の場合は今回の発表を見て逆にここまでMicrosoftが追い詰められているのか…と驚きました。というのは、スターゲート絡み…つまりOpenAIのためにMicrosoftは相当な被害(つまり赤字)を被っているはずで、その赤字分を何とかして取り返すためにもエンプラ領域での稼ぎ頭であるMicrosoft 365にAI関連サービス分の利益を上乗せして売るのは至上命題だったはずなのです。
それが、今回のGemini-3.0ショックでAI関連付加サービス(要はCopilot)を一気に全て無料で開放することになってしまった(正確には開放せざるを得なかった)訳で、これでいったいどうやってOpenAI絡みの投資を回収するのか、今頃Microsoft CEOのサティア・ナデラ氏は途方にくれているのでは?
こうなると、今後は本当に(売り上げを)取りやすいところから確実に取るしかないとなり、その結果がMicrosoft 365におけるアカデミック領域でのストレージサービスの突然の縮小(つまり以前と同じに使いたければ追加分の莫大なコストが必要)であるとか、あるいはNPO法人向けにかなりの規模で大盤振る舞いをしていた無料でのサービス提供を一気に絞り込み始めたということなのでしょう。私が見る限り、あまり表には出て来て無いところでのその辺りの動きに、今のMicrosoftの焦りが如実に反映されていると見ました。 November 11, 2025
2RP
先月ひょんなことからGoogle TPUとAmazon Trainiumを社内検証(と言っても小規模)やる機会があったが、改めて言うと、
NVIDIAのチップの置き換えにはならない。やるなら相当な覚悟と技術力がいる。
詳細はあんま書けないけど、cuda依存を完全に無くすのはかなり難しい。 November 11, 2025
2RP
🚀Microsoft、Outlook・Word・Excel・PowerPointに無料AI機能を2026年初頭から追加!
📊何が変わるのか?劇的なBefore/After
従来(2024-2025年):
・基本的なMicrosoft 365:月額約1,500円
・高度なAI機能:月額約3,000円の追加課金
・→ 合計月額4,500円必要
2026年以降:
・基本的なMicrosoft 365:月額約1,500円のまま
・高度なAI機能:追加料金なしで利用可能!
・→ 実質的に約3万円/年の節約💰
✨具体的に何ができるようになる?
1️⃣Outlook Copilot Chatの大幅強化
・受信トレイ全体を横断的に理解
・カレンダーや会議情報も統合的に分析
・「今週の重要メールを整理して」と頼めば即座に対応
・会議前に関連メールを自動集約して準備完了
従来は個別のメールスレッドごとの対応のみでしたが、受信トレイ全体を理解するAI秘書に進化します📧
2️⃣Agent ModeがWord・Excel・PowerPointで解禁
これまで月額30ドルの有料版でしか使えなかった「Agent Mode」が全ユーザーに開放されます。
Excelでの革命:
・プロンプト入力だけで複雑なスプレッドシートを自動生成
・AnthropicのClaudeとOpenAIのGPTモデルを選択可能
・推論モデルで高度な分析も実行可能
Wordでの進化:
・複雑な文書を自然言語で指示するだけで作成
・構成から執筆まで一貫してAIがサポート
PowerPointの本気:
・企業のブランドテンプレートを自動適用
・プロンプトだけで新規スライドを作成
・既存スライドのテキスト書き換え・整形
・関連画像の自動追加🎨
🔍なぜMicrosoftはここまで踏み込んだのか?
理由は明確です。Google WorkspaceがGeminiを統合して猛追する中、Microsoftは「AI機能の無償化」で競争優位を確立しようとしています。
実際、企業向けチャットアプリ利用では、アメリカで既にGeminiがChatGPTを上回るという調査結果も出ています。
MicrosoftとしてはOfficeの圧倒的なシェアを活かし、「Officeを使っている = 高度なAIが使える」という状況を作り出すことで、Google Workspaceへの流出を防ぎ、さらにシェアを拡大する戦略です。
💡今すぐ取り組むべき3つのアクション
1️⃣2026年3月のプレビュー開始をカレンダーに登録
無料AI機能は2026年3月までにプレビュー提供開始予定。早期アクセスで使い方を習得しましょう
2️⃣現在の業務フローを見直し、AI活用ポイントを洗い出す
「メール整理」「資料作成」「データ分析」など、AIに任せられる業務を事前にリストアップ
3️⃣中小企業なら「Copilot Business(月額21ドル)」も検討
300ユーザー未満の企業向けに、より高度な機能が月額21ドルで利用可能に
🌟AI格差が消える時代の幕開け
これまで「予算がある企業だけがAIで効率化」という状況でしたが、2026年からは誰もが平等に高度なAI機能を使える時代が始まります。
重要なのは、ツールが使えることではなく、そのツールをどう使いこなすか。
無料化によってツールの差はなくなります。差がつくのは「AIをどれだけ業務に統合できるか」という実践力です💪
ソース:https://t.co/BUlAO1IShw November 11, 2025
2RP
Gemini3, Nano Banana Pro登場で, 先月時点で私がTBSの以下番組で「OpenAIは危うい.Googleが勝つ」としてたのが注目(特に投資家層?)されてるようです
実際は公には以下記事で2024年OpenAI絶頂期からずっとGoogle有利とみてます
長い(私のX史上最長)ですが根拠, OpenAI vs Googleの展望を書いてみます
先月のTBS動画:https://t.co/kgWcyTOTWK
2024年6月の記事:https://t.co/4HEhA4IJQa
参考のため、私がクローズドな投資家レクなどで使う資料で理解の助けになりそうなものも貼っておきます。
※以下はどちらかというと非研究者向けなので、研究的には「当たり前では」と思われることや、ちょっと省略しすぎな点もあります。
まず、現在の生成AI開発に関して、性能向上の根本原理、研究者のドグマ的なものは以下の二つです。基本的には現在のAI開発はこの二つを押さえれば大体の理解ができると思います。両者とも出てきたのは約5年前ですが、細かい技術の発展はあれど、大部分はこの説に則って発展しています。
①スケーリング則
https://t.co/WKl3kTzcX5
②SuttonのThe Bitter Lesson
https://t.co/esHtiJAcH9
①のスケーリング則は2020年に出てきた説で、AIの性能は1)学習データの量、2)学習の計算量(=GPUの投入量)、3)AIのモデルサイズ(ニューラルネットワークのパラメータ数)でほぼ決まってしまうという説です。この3つを「同時に」上げ続けることが重要なのですが、1と3はある程度研究者の方で任意に決められる一方、2のGPUはほぼお金の問題になります。よって、スケーリング則以降のAI開発は基本的にお金を持っている機関が有利という考えが固まりました。現在のChatGPTなどを含む主要な生成AIは一つ作るのに、少なく見積もってもスカイツリーを一本立てるくらい(数百億)、実際には研究の試行錯誤も含めると普通に数千億から数兆かかるくらいのコストがかかりますが、これの大部分はGPUなどの計算リソース調達になります。
②のThe Bitter Lessonは、研究というよりはRichard Suttonという研究者個人の考えなのですが、Suttonは現在のAI界の長老的な人物で、生成AI開発の主要技術(そして私の専門)でもある強化学習の事実上の祖かつ世界的な教科書(これは私達の翻訳書があるのでぜひ!)の執筆者、さらにわれわれの分野のノーベル賞に相当するチューリング賞の受賞者でもあるので、重みが違います。
これは端的にいうと、「歴史的に、AIの発展は、人間の細かい工夫よりも、ムーアの法則によって加速的に発展する計算機のハードの恩恵をフルに受けられるものの方がよい。つまりシンプルで汎用的なアルゴリズムを用い、計算機パワーに任せてAIを学習させた方が成功する。」ということを言っています。
①と②をまとめると、とにかく現状のAIの性能改善には、GPUのような計算リソースを膨大に動員しなければならない。逆に言えばそれだけの割と単純なことで性能上昇はある程度約束されるフェーズでもある、ということになります。
これはやや議論を単純化しすぎている部分があり、実際には各研究機関とも細かいノウハウなどを積み重ねていたり、後述のようにスケーリングが行き詰まることもあるのですが、それでも昨今のAI発展の大半はこれで説明できます。最近一般のニュースでもよく耳にするようになった異常とも言えるインフラ投資とAIバブル、NVIDIAの天下、半導体関連の輸出制限などの政治的事象も、大元を辿ればこれらの説に辿り着くと思います。
以下、この二つの説を前提に話を進めます。
公にはともかく私が個人的に「OpenAIではなくGoogleが最終的には有利」と判断したのはかなり昔で、2023年の夏時点です。2023年6月に、研究者界隈ではかなり話題になった、OpenAIのGPT-4に関するリーク怪文書騒動がありました。まだGoogleが初代Geminiすら出してなかった時期です。(この時期から生成AIを追っている人であれば、GPT-4のアーキテクチャがMoEであることが初めて明らかになったアレ、と言えば伝わるかと思います)
ChatGPTの登場からGPT-4と来てあれほどの性能(当時の感覚で言うと、ほぼ錬金術かオーパーツの類)を見せられた直後の数ヶ月は、さすがに生成AI開発に関する「OpenAIの秘伝のタレ説」を考えており、OpenAIの優位は揺らがないと考えていました。論文では公開されていない、既存研究から相当逸脱した特殊技術(=秘伝のタレ)がOpenAIにはあって、それが漏れない限りは他の機関がどれだけお金をかけようが、まず追いつくのは不可能だと思っていたのです。しかし、あのリーク文書の結論は、OpenAIに特別の技術があったわけではなく、あくまで既存技術の組み合わせとスケーリングでGPT-4は実現されており、特に秘伝のタレ的なものは存在しないというものでした。その後、2023年12月のGemini初代が微妙だったので、ちょっと揺らぐこともあったのですが、基本的には2023年から私の考えは「最終的にGoogleが勝つだろう」です。
つまり、「スケーリングに必要なお金を持っており、実際にそのAIスケーリングレースに参加する経営上の意思決定と、それを実行する研究者が存在する」という最重要の前提について、OpenAIとGoogleが両方とも同じであれば、勝負が着くのはそれ以外の要素が原因であり、Googleの方が多くの勝ちにつながる強みを持っているだろう、というのが私の見立てです。
次に、AI開発競争の性質についてです。
普通のITサービスは先行者有利なのですが、どうもAI開発競争については「先行者不利」となっている部分があります。先行者が頑張ってAIを開発しても、その優位性を保っている部分でAIから利益を得ることはほとんどの場合はできず、むしろ自分たちが発展させたAI技術により、後発事業者が追いついてきてユーザーが流出してしまうということがずっと起きているように思われます。
先ほどのスケーリング則により、最先端のAIというのはとても大きなニューラルネットワークの塊で、学習時のみならず、運用コストも膨大です。普通のITサービスは、一旦サービスが完成してしまえば、ユーザーが増えることによるコスト増加は大したことがないのですが、最先端の生成AIは単なる個別ユーザーの「ありがとうございます」「どういたしまして」というチャットですら、膨大な電力コストがかかる金食い虫です。3ドル払って1ドル稼ぐと揶揄されているように、基本的にはユーザーが増えれば増えるほど赤字です。「先端生成AIを開発し、純粋に生成AIを使ったプロダクトから利益を挙げ続ける」というのは、現状まず不可能です。仮に最先端のAIを提供している間に獲得したユーザーが固定ユーザーになってくれれば先行者有利の構図となり、その開発・運営コストも報われるのですが、現状の生成AIサービスを選ぶ基準は純粋に性能であるため、他の機関が性能で上回った瞬間に大きなユーザー流出が起きます。現状の生成AIサービスはSNSのように先行者のネットワーク効果が働かないため、常に膨大なコストをかけて性能向上レースをしなければユーザー維持ができません。しかも後発勢は、先行者が敷いた研究のレールに乗っかって低コストで追いつくことができます。
生成AI開発競争では以上の、
・スケーリング則などの存在により、基本的には札束戦争
・生成AIサービスは現状お金にならない
・生成AI開発の先行者有利は原則存在しない
と言う大前提を理解しておくと、読み解きやすいかと思います。
(繰り返しですがこれは一般向けの説明で、実際に現場で開発している開発者は、このような文章では表現できないほどの努力をしています。)
OpenAIが生成AI開発において(先週まで)リードを保っていた源泉となる強みは、とにかく以下に集約されると思います。
・スケーリングの重要性に最初に気付き、自己回帰型LLMという単なる「言語の穴埋め問題がとても上手なニューラルネットワーク」(GPTのこと)に兆レベルの予算と、数年という(AI界隈の基準では)気が遠くなるような時間を全ベットするという狂気を先行してやり、ノウハウ、人材の貯金があった
・極めてストーリー作りや世論形成がうまく、「もうすぐ人のすべての知的活動ができるAGIが実現する。それを実現する技術を持っているのはOpenAIのみである」という雰囲気作りをして投資を呼び込んだ
前者については、スケーリングと生成AIという、リソース投下が正義であるという同じ技術土俵で戦うことになる以上、後発でも同レベルかそれ以上の予算をかけられる機関が他にいれば、基本的には時間経過とともにOpenAIと他の機関の差は縮みます。後者については、OpenAIがリードしている分には正当化されますが、一度別の組織に捲られると、特に投資家層に対するストーリーの維持が難しくなります。
一方のGoogleの強みは以下だと思います。
・投資マネーに頼る必要なく、生成AI開発と応用アプリケーションの赤字があったとしても、別事業のキャッシュで相殺して半永久的に自走できる
・生成AIのインフラ(TPU、クラウド事業)からAI開発、AIを応用するアプリケーション、大量のユーザーまですべてのアセットがすでに揃っており、各段階から取れるデータを生かして生成AIの性能向上ができる他、生成AIという成果物から搾り取れる利益を最大化できる
これらの強みは、生成AIのブーム以前から、AIとは関係なく存在する構造的なものであり、単に時間経過だけでは縮まらないものです。序盤はノウハウ不足でOpenAIに遅れをとることはあっても、これは単に経験の蓄積の大小なので、Googleの一流開発者であれば、あとは時間の問題かと思います。
(Googleの強みは他にももっとあるのですが、流石に長くなりすぎるので省略)
まとめると、
生成AIの性能は、基本的にスケーリング則を背景にAI学習のリソース投下の量に依存するが、これは両者であまり差がつかない。OpenAIは先行者ではあったが、AI開発競争の性質上、先行者利益はほとんどない。OpenAIの強みは時間経過とともに薄れるものである一方、Googleの強みは時間経過で解消されないものである。OpenAIは自走できず、かつストーリーを維持しない限り、投資マネーを呼び込めないが、一度捲られるとそれは難しい。一方、GoogleはAIとは別事業のキャッシュで自走でき、OpenAIに一時的に負けても、長期戦でも問題がない。ということになります。
では、OpenAIの勝利条件があるとすれば、それは以下のようなものになると思います。
・OpenAIが本当に先行してAGI開発に成功してしまう。このAGIにより、研究開発や肉体労働も含むすべての人間の活動を、人間を上回る生産性で代替できるようになる。このAGIであらゆる労働を行なって収益をあげ、かつそれ以降のAIの開発もAGIが担うことにより、AIがAIを開発するループに入り、他の研究機関が原理的に追いつけなくなる(OpenAIに関する基本的なストーリーはこれ)
・AGIとまではいかなくとも人間の研究力を上回るAIを開発して、研究開発の進捗が著しく他の機関を上回るようになる
・ネットワーク効果があり先行者有利の生成AIサービスを作り、そこから得られる収益から自走してAGI開発まで持っていく
・奇跡的な生成AIの省リソース化に成功し、現在の生成AIサービスからも収益が得られるようになる
・生成AI・スケーリング則、あるいは深層学習とは別パラダイムのAI技術レースに持ち込み技術を独占する(これは現在のAI研究の前提が崩れ去るので、OpenAI vs Googleどころの話ではない)
・Anthropicのように特定領域特化AIを作り、利用料金の高さを正当化できる価値を提供する
最近のOpenAIのSora SNSや、検索AI、ブラウザ開発などに、この辺の勝利条件を意識したものは表れているのですが、今のところ成功はしていないのではないかと思います。省リソース化に関しては、多分頑張ってはいてたまに性能ナーフがあるのはこれの一環かもしれないです。とはいえ、原則性能の高さレースをやっている時にこれをやるのはちょっと無理。最後のやつは、これをやった瞬間にAGIを作れる唯一のヒーローOpenAIの物語が崩れるのでできないと思います。
最後に今回のGemini3.0やNano Banana Pro(実際には二つは独立のモデルではなく、Nano Bananaの方はGemini3.0の画像出力機能のようですが)に関して研究上重要だったことは、事前学習のスケーリングがまだ有効であることが明らかになったことだと思います。
ここまでひたすらスケーリングを強調してきてアレですが、実際には2024年後半ごろから、データの枯渇によるスケーリングの停滞が指摘されていること、また今年前半に出たスケーリングの集大成で最大規模のモデルと思われるGPT-4.5が失敗したことで、単純なスケーリングは成り立たなくなったとされていました。その一方で、
去年9月に登場したOpenAIのo1やDeepSeekによって、学習が終わった後の推論時スケーリング(生成AIが考える時間を長くする、AIの思考過程を長く出力する)が主流となっていたのが最近です。
OpenAIはそれでもGPT-5開発中に事前学習スケーリングを頑張ろうとしたらしいのですが、結局どれだけリソースを投下しても性能が伸びないラインがあり、諦めたという報告があります。今回のGemini3.0に関しては、関係者の発言を見る限り、この事前学習のスケーリングがまだ有効であり、OpenAIが直面したスケーリングの限界を突破する方法を発見していることを示唆しています。
これはもしかしたら、単なるお金をかけたスケーリングを超えて、Googleの技術上の「秘伝のタレ」になる可能性もあり、上記で書いた以上の強みを今回Googleが手にした可能性もあると考えています。
本当はもっと技術的に細かいことも書きたいのですが、基本的な考えは以上となります。色々と書いたものの、基本的には両者が競争してもらうことが一番技術発展につながるとは思います! November 11, 2025
2RP
【結果発表】
イベントは終了しました。ご参加いただきありがとうございました。見事当選された皆様、おめでとうございます!
当選者様は、2025/12/4 23:59 (JST) までにGoogleフォームにて必要な情報をご記入ください。ご記入いただいた情報は賞品配布にのみ使用されます。受賞者リストは、リンクの下よりご確認いただけます。
>>https://t.co/1LwFs6isk8 November 11, 2025
1RP
📕AppleのAI戦略が大転換:年間1,570億円でSiriにGeminiを採用した「本当の理由」
『自社AI開発 vs 外部調達』で悩む経営者・事業責任者にとって、この判断は教科書になります。
なぜAppleほどの巨人が、AIで外部依存を選んだのか?
技術的な詳細と戦略的な意図を深掘りしてみました。
まず押さえるべき全体像
AppleはSiri刷新のため、Googleが開発した1.2兆パラメーターの大規模言語モデル「Gemini」を採用し、年間約10億ドル(約1,570億円)を支払う契約を結んだ。
これ、実は相当な「格差」を示す数字なんです。
現在AppleがクラウドベースのApple Intelligenceで使用しているのは1,500億パラメーター。つまりGeminiは、Appleの現行モデルの『8倍』の規模。しかも報道では「大幅に上回る」という表現なので、実際の性能差はパラメーター数以上かもしれない。
なぜChatGPTでもClaudeでもなく、Geminiだったのか?
Appleは3つの選択肢を比較検討したそうです。
・OpenAIのChatGPT
・AnthropicのClaude
・GoogleのGemini
結果として、Anthropicは「料金が高すぎる」と判断され脱落。最終的にGeminiが選ばれた。
ここで興味深いのは、技術的な理由だけでなく『関係性とインフラ』が決め手になった可能性です。
GoogleとAppleは既に検索エンジンで年間約200億ドル(約3.1兆円)の取引関係にある。Googleはデフォルト検索エンジンの座を得るために、これだけの金額をAppleに支払い続けている。
つまり、今回のAI契約で年間約10億ドル(約1,570億円)をAppleがGoogleに支払っても、差し引きで約190億ドル(約2.9兆円)はAppleの手元に残る計算。
財務的には全く問題ない。むしろ「既にある信頼関係」の延長線上で、リスクを最小化できる。
Geminiの技術的な強み:Mixture-of-Expertsとは何か?
もう一つ重要なのが、Geminiが採用している「Mixture-of-Experts」という仕組みです。
これ、1.2兆パラメーター全部を毎回使うわけじゃないんですよね。
各質問に対して、実際に動作するのは「一部の専門家(Experts)」のみ。必要な部分だけを効率的に使うことで、処理コストを大きく増やすことなく、大規模な計算能力を実現している。
これがAppleにとって魅力的だったのは、『コスト効率』と『処理速度』の両立が可能だから。
iPhoneユーザーは世界中に何億人もいる。全員が同時にSiriを使う可能性がある中で、計算リソースを効率化できる仕組みは不可欠です。
プライバシーという譲れない一線
ただし、Appleには絶対に譲れない条件がありました。『プライバシー』です。
今回の契約では、Geminiは「Appleのプライベートクラウドサーバー上で動作」するため、GoogleがAppleのデータにアクセスすることはないとのこと。
これ、技術的にはかなり複雑な実装のはず。GoogleのAIをAppleのインフラ上で動かすって、相当な調整とカスタマイズが必要です。
でも、ここを妥協しなかったことが、Appleらしさだと思います。
「最高のAI体験」と「ユーザーのプライバシー保護」の両立。これがAppleの譲れない価値観。
では、Apple自社のAI開発はどうなるのか?
ここが最も重要なポイントです。
Appleは現在、1兆パラメーターのクラウドベースモデルを開発中で、早ければ2026年に完成予定。つまりGemini採用は「自社モデルが高性能化するまでの暫定措置」という位置づけ。
そして、スマートになったApple Intelligence版Siriは、2026年春のiOS 26.4アップデートで提供される見込み。
つまりタイムラインはこうです
・2025年:Gemini採用で「とりあえず」最先端AIをSiriに実装
・2026年春:新Siri公開(iOS 26.4)
・2026年以降:自社1兆パラメーターモデルが完成次第、段階的に切り替え
この戦略、実は『時間を買っている』んですよね。
もしAppleが「自社開発が完成するまで待つ」という判断をしていたら、2025〜2026年の2年間、AIで大きく遅れたままになる。
その間にユーザーは待ってくれるのか?Androidに流れるのでは?という『機会損失リスク』の方が、1,570億円よりも遥かに大きい。
AI時代の「内製vs外部調達」をどう考えるか
私たちビジネスサイドが学ぶべきは、この『判断の速さ』と『プライドの捨て方』だと思います。
Appleといえば、ハード・ソフト・サービス全てを自社で作り込む「垂直統合戦略の王者」でした。iPhone、Mac、iOS、独自チップ(M4、A18)...全て内製。
それが今回、AIに関しては(少なくとも一時的に)外部依存を選んだ。
これは『敗北』ではなく、極めて合理的な『戦略的判断』です。
特にAIのような超高速で進化する領域では:
・何を内製し、何を外部に頼るか?
・いつまでに何を実現しなければならないか?
・その判断を遅らせるコストはいくらか?
この3つの見極めが死活問題になる。
GoogleはDeepMind買収以来、10年以上AIに莫大な投資を続けてきました。その差は、もはや1〜2年では埋められない。ならば「今使えるベストな選択肢」でユーザー体験を向上させ、その間に自社技術を磨く。
完璧を待つよりも、暫定ベストで走り出す。
これが、AI時代のビジネス判断の新常識なのかもしれません。
Appleの判断は、私たち全員にとっての教科書だと感じています。
※Googleの進化を体感するならNano Banana Pro!時代の変換点レベルをぜひ引用ポストの記事から体験してみてください 👇 November 11, 2025
1RP
⋆͛🐶🐶⋆͛
エースは爆発に備え溜めてる(怖い😂)
もこは察知してかやたらとエースのお尻を刺激する!😱笑
④Googleから来た📸2年前の今日のクレアまりん夫婦だった💗会いたいなぁ https://t.co/PGnmezIlYX November 11, 2025
1RP
TOEIC…5点刻み
MBTI…満点とかない
タワマン…都内の最高は麻布台ヒルズの64階らしい(GoogleのAI)
PASMO…2万円まで
ゆうちょ…ブラックカードはないらしい(GoogleのAI)
ほとんどの人間が気づけるような親切設計 https://t.co/5G8dPRcJ5T November 11, 2025
1RP
締切迫る!
【ライター募集】大賞賞金10万円!ゲームレビューコンテスト開催!
https://t.co/z5KEMbY58M
プロアマ問わず、ファミ通.comでゲームライターをしたい方をお待ちしています。詳しくは記事内の募集要項などをお読みください。応募形式は管理の都合上Googleドキュメントのみとなります、ご了承ください。 November 11, 2025
1RP
>数週間後にはGoogleが同じ機能作る。
そんなの100も承知です。「アメリカのベンダーが結局やるから倭国人が何もやらない」は超絶ナンセンスな考えだと思います。
駅で誰かが具合悪くても誰かが助けるでしょ精神で放置している倭国人の悪い特性、出ちゃってます。
やらないと何もわからないです。 https://t.co/EFzkn7vIet November 11, 2025
1RP
你应该什么时候开始定投?
在市场中的时间,比买卖的时机更重要。
—肯·费舍尔
在我分享投资理财经验的过程中,遇到最多的问题就是两个:
1、现在股市处于高位,是不是等到股市跌下来再开始投资?
2、现在股市处在低位,是不是等到股市涨上来再开始投资?
可以看到,无论股市处于什么地方,总有朋友问我要不要等等再开始投资!
甚至有些自以为是的朋友说:我们应该采取灵活、有效的策略,等股市涨百分之X或者跌了百分之Y,再进行投资。
每当碰到这些问题,我都哑然失笑。
我总是回答说:任何时候都可以开始定投!闭着眼睛定投就是了,不要看当下的市场行情。
当然,我理解股市新手的种种顾虑,怕买在最高点,或者怕买完之后,股市长期震荡徘徊。
可是,历史数据明白无误的告诉我们:只要我们坚持长期定投,那么无论何时开始,我们都能取得非常出色的投资成绩!
换句话说,我们要尽早进场,让时间治愈市场波动带来的创伤!
空口无凭,我还是拿数据说话吧。
我们首先要明确的是,我们考虑的是长期的投资窗口。一个普通工薪家庭,即使从25岁开始算起,到65岁退休前,他们也有40年的投资窗口期。
不仅如此,按照主流的投资理念,即使是退休以后,我们仍然需要把很大一部分资产分配在股市里。如果我们的预期寿命是80岁,那么退休以后,我们仍然有15年的投资窗口期
因此,普通家庭的投资年限可以轻松超过55年!
当然,很多人退休以后,就没有多余的资金继续定投了。但是,我们仍然不要忽略了退休以后资金仍然会长期留在股市里这一事实。比如,即使我们在退休前后赶上股市大跌,我们仍然有足够的时间等待股市反弹。
其次,我们看看在不同的时间开始、每月定投标普500指数基金,在40年里取得的平均年化收益率,看看到底有多大的差异。
我用权威网站https://t.co/RyFwt7VlGV上的标普500指数计算器,查看从不同年份的一月份开始定投的数据。
我们可以看到,从1960年到1985年的26年时间里,定投取得的最好年化收益率是1960年一月开始的11.9%,因为40年后的2000年初,刚好是美股互联网泡沫破裂前的股市高点。
而最差的年化收益率是1969年开始的8.4%,因为40年后的2009年初,刚好是2008年开始的金融海啸期间美股的最低点。即使是这种情况,只要再持有5年,平均年化收益率就会到达9.7%。
但是无论如何,最差情况和最好情况之间的差异,也只有3.5%。
即使是最差的情况,在40年时间里,如果我们每个月投资一千美元,最终投资了48万美元,我们仍然会拥有360万美元资产,账面累积投资收益率为650%。这仍然是一个惊人的数字!
最后,根据很多研究,绝大部分投资者,尤其是新手,是非常糟糕的“择时交易者”。他们更有可能在高点买进、在低点恐慌性抛出。这种非理性行为,使得他们的投资成绩惨不忍睹。
因此,这些投资新手,更应该有自知之明,采取闭着眼睛定投的策略,强迫自己坚守投资纪律,定时投资而完全忽视当下的股市行情。
这样的投资策略,也最有可能保证:无论他们何时进入职场,只要他们坚持定投,就能取得辉煌的投资成绩,并尽早实现财务自由!
其实我在2024年一月,发过一篇文章:美股又创新高,你还在观望吗?从那时起,美股又涨了20%以上!
如果你还在坐观垂钓者、徒有羡鱼情,请允许我向你大喝一声:时间就是财富,今天就开始定投!
如果你想了解更多我的投资理财经验和见解,请去亚马逊网站或者Google Play Books,购买我的中文理财书《财富捷径》,或者英文版《The Shortcut to Wealth: Your Simple Roadmap to Financial Independence》。谢谢!
简体中文版《财富捷径》的链接是:
-- Amazon: https://t.co/PnRkz5q91L
-- Google: https://t.co/KuThis41ge
繁体中文版《財富捷徑》的链接是:
-- Amazon: https://t.co/5BZBJpXv8p
-- Google: https://t.co/EKnOli43Uz
英文版《The Shortcut to Wealth》的链接如下:
-- Amazon:https://t.co/E4WYKfDlI2
-- Google:https://t.co/yuTm7IzP9i November 11, 2025
1RP
<ポストの表示について>
本サイトではXの利用規約に沿ってポストを表示させていただいております。ポストの非表示を希望される方はこちらのお問い合わせフォームまでご連絡下さい。こちらのデータはAPIでも販売しております。









